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Abstract
Metal interconnects basically used for make the interconnections between different part of the
circuitry in order to realize any System on Chip (SoC) design. These metal interconnects affect
the performance of the design as the process technology drastically shrinks. For nanometer
process technologies, the coupling effect in the interconnect causes noise and crosstalk. These
noise and crosstalk can affect the operating speed of the design, which is responsible for the
timing aspect of the design. These problems are negligible in the older technologies. Thus,
the physical design and verification of latest process technologies should include the effects of
crosstalk and noise. If the timing of a design is not verified, then the design may not perform at
the desired operating speed it was designed for. Apart from timing there are two other factors
that needs to be considered while designing. Those are Power and Area. There will always
be a trade-off between these three factors. Static Timing Analysis (STA) is one of the many
techniques used by the designers to verify the timing of the design and also for closing the
design with respect to timing, which is called as timing closure. There is one more method
called Dynamic Timing Analysis (DTA) or Timing Simulation, which was used in older days
for timing verification. STA is static because the analysis is done when the design is stable and
it does not depend upon the input vectors being given to the design. STA uses setup check and
hold check for verifying the timing of the design. Synopsys PrimeTime is the tool used for
STA. During the physical implementation of the design (Pre-Signoff/ICC stage) also the timing
can be optimized by using efficient floorplanning, placement and routing techniques. Most of
the timing optimization are done in physical implementation stage only. Synopsys IC Compiler
II is the tool used for the physical implementation. The main aim of this master thesis is to
investigate various timing optimization techniques and methods to fix the timing violations in
both pre-signoff and signoff stage. In signoff stage, the design will be in Engineering Change
Order (ECO) mode and there will be no further design optimization performed in this stage.
The timing fixes are given in the form of ECOs and those are sourced and routed. The tech-
niques that are used in this stage are cell sizing and buffer insertion. Only in the pre-signoff
stage, optimization of the design is done by changing the floorplan, placement and route of
the design. In both the stages of timing optimization, power and area of the design will also
change and hence they should also be checked and maintained within limits. These techniques
and methods are analysed and implemented to achieve better timing results and ultimately to
validate the operating speed of the design.

Keywords: STA, Crosstalk and noise, Setup and Hold check, Signoff, ECO, DTA
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Chapter 1

INTRODUCTION

1.1 Core Technical Area

1.1.1 Overview

Very-large-scale integration (VLSI) is the process in which the creating an integrated circuit
(IC) by combining hundreds of thousands of transistors or devices into a single chip. With the
advancement in VLSI technology, there is a constant reduction in the feature size of VLSI de-
vices (i.e. the minimum transistor size). The feature size decreased from about 0.25 m in 1997
to about 10 nm today. Such a continual miniaturization of devices has had a strong impact on
VLSI technology in several ways. One of those impacts is the timing analysis. As increase in
the number of transistors per chip increases the rated speed or frequency at which a design is
to be operated has to be met and the number of timing paths rises exponentially high due to
multiple connections in the design. The continuous decrease in feature size and corresponding
increase in chip density and operating frequency have made exhaustive timing analysis a major
concern in VLSI design. Hence, Static Timing Analysis has branched out as an entirely separate
domain of expertise in itself in modern day System on Chip Design.— This System on Chip
is positioned to be a successor to the previous one and is an improvisation to the already exist-
ing one. The platform vision is to take forward the success of the existing SoC by providing
new value added features and technologies and also enable significant improvements with the
latest CPU, GMD (Graphics Media Display) and other technologies. This System on Chip is
designed to cater to various segments within the Internet of Things. It is begin targeted for entry
level Micro Processor Unit (MPU) segments in various Internet of Things (IoT) markets with
a Thermal Design Power primarily targeted for 6-10W SKU. All these markets have the same
principal requirements with regards to power, performance and price point but differ in terms of
IP (Intellectual Property) block/feature requirements. Hence the SoC architecture needs to take
care of the various IP integration challenges for all these target segments yet meet the common
goals for power/performance and price. However the current SoC is primarily driven by indus-
trial, office automation and retail segments. SoC is primarily targeted at industrial automation
and Distributed Control Node (DCN) applications. With the birth of Industry 4.0, there is a
fundamental change happening with regard to systems architecture across all the domains in
the industrial automation segment. This change is primarily driven by the need to connect every
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machine to a common cloud infrastructure, gather data from these machines constantly to un-
derstand and improve their efficiency, control them in a time sensitive manner to avoid unneces-
sary cycles and localize the intelligence within the machines to drive better resource allocation.
Customers are looking at enabling these systems like PLC/PAC (programmable controllers),
motor/motion controllers etc. with sufficient compute horse-power and IO integration to meet
their goals of efficiency. Industrial applications are among the major volume drivers for this
SoC. Primary segments within the industrial market are broadly classified into Industrial PC
(IPC), Programmable Logic Controller (PLC) / Programmable Automation Controller (PAC),
Motion Controller (MC), Human Machine Interface (HMI), Industrial Gateway, Test and Mea-
surement. Also Motion Controller applications include Machine Tools, Production Machines,
Cranes, General motion control machines etc.

1.2 MOTIVATION
Timing Analysis is carried out using multiple proven techniques which have been in effect

for the past few decades. Some of the techniques which are commonly used are Static Timing
Analysis, Timing Simulation etc. The method of timing simulation is also referred to as Dy-
namic Timing Analysis (DTA). The concept of timing simulation is to apply input vectors as
stimulus on the input signals, observe the resulting behavior, advance the timing with new set
of input vectors and observe the new resulting behavior and so on. One of the key features of
timing simulation is that along with the analysis of the timing aspect of a design, the function-
ality of the circuitry is also verified extensively, which may not be required as the functionality
and logic checks are effectively carried out at the Register Transfer Level (RTL) level. Such a
verification of functionality at the late design stage may consume a substantial amount of time
to carry out timing analysis which may unwantedly increase the time to market for an SoC.
Moreover, timing simulation verifies only specific portions of the design which gets exercised
by the stimulus. Ideally, verification through timing simulation is only as exhaustive as the test
vectors used. Also, the process of simulation is too slow since a single design contains millions
of gates. In other words, verification of timing checks by timing simulation offers a much slower
runtime which in turn in modern day VLSI design affects the time to market critical for an SoC.
Hence timing simulation as a technique is not widely practiced today for timing analysis. But
since the input vectors are given during the timing analysis and the functionality is also veri-
fied, timing simulation is found to be more accurate than STA. STA is the most frequently used
and modern day adapted technique for exhaustive timing analysis. This technique has multiple
advantages which has been the key reason why it has become the most popularly used method
for timing verification in modern day VLSI design. The name static defines that the technique
is input independent and works based on the constraints being applied for the particular design
rather than the input vectors. This method is a faster and simpler way of timing verification and
is capable of verifying millions of gates in a shorter amount of time. STA is static because the
analysis is statically (by keeping the design stable) and does not depend upon the inputs being
applied at the input pins of the design. It is complete and exhaustive verification of all timing
checks of a design. Hence with its advantages over the other methods, STA is the widely used
method for timing verification.

The main aim of this master thesis is to implement the STA run for multiple partitions in a
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design. For a design at block level, a PrimeTime session is generated by the STA run for each
blocks. The aim is also to investigate and implement various timing checks available in SoC
backend design flow for a VLSI system on a chip design at the block level through exhaustive
timing analysis. Synchronous checks such as setup and hold checks are carried out at the data
paths for multiple endpoints and slack are met. At a later stage, the transition and capacitance
violations are also addressed and also the reason behind such violations and implementing fixes
for the same are also done.

1.3 RESEARCH OBJECTIVE
To gain knowledge on the basic concepts related to timing closure and better understanding

of the concepts. A brief literature survey must be done on the timing concepts and also on the
methodologies and techniques used for meeting the timing requirements of the design. There
are several tools used for verifying and optimizing the timing of a design. Synopsys tools
(PrimeTime, IC Compiler) are used in this project so a good knowledge of those tools much be
achieved. Better understanding of the stages at which timing optimization and timing violation
fixes are performed. There are basically two stages: pre-signoff/ICC stage and signoff/post-ICC
stage. Able to implement an efficient floorplan such that the timing is optimized as much as
possible. Also, should be able to do better placement and routing. The basic ideas, techniques
and methodologies used in this stage must be known. IO port optimization, bound creation
and Clock Tree Synthesis (CTS) are some of the techniques used in the pre-signoff stage. To
perform STA on the design in order to obtain the timing violations (setup and hold) occurring
in the design. To fix the setup and hold violations by writing appropriate Engineering Change
Order (ECO). Must be able to analyze a timing path and write ECOs for fixing the timing
violations. Better understanding of the ECO should be achieved. Should be able to tell whether
a path is fixable or unfixable just by analyzing the timing path. Cell sizing, VT swap, buffer
insertion and removal of buffer are some of the techniques used in the ECO. Full understanding
of these techniques helps to write an ECO that can be sourced and routed. Analysis of the
buffers and understanding the behavior of buffers at different corners helps to fix hold violations
because hold violation fix involves insertion of the buffers. To find the discrepancies in the slack
value of a path in block level and full chip level. This analysis helps to make the slack equal at
block level and full chip level. Finally the ultimate objective is to validate the design whether it
can operate in the rated speed or frequency.

1.3.1 Physical Design
Physical design is used to describe the geometries (typically through CAD) used to represent

materials used in VLSI design. For example, polygons and rectangles are used to represent
silicon and metal layers on chips.

Physical design is tends for the transforming or action of to convert Netlist into layout which
is manufacture-able. Physical design process is often referred as PnR (Place and Route) or APR
(Automatic Place & Route).

Floorplan is the first and the most reproving step in Physical design. Timing, Noise, IR and
Routing issues. A bad floorplan will blow up the area, power and affects reliability and life of
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the IC and also increases the overall IC cost.
Most of the Place and Route tools generally provide an automatic floorplan option. Au-

tomatic floorplan option is developed its own macro placement based on the effort & other
options. But these options are not good enough to give optimum floorplan for all kind of de-
signs. This option will be handy, when design has 100s of Macros, but generated floorplan
needs a lot of modification for further optimizations.

Next is the Placement stage where all the standard cells are placed in the design which
typically includes the size, shape & macro-placement. Placement will be driven by different
types criteria like timing driven, congestion driven, power optimization in upf etc. Strategy of
Timing & Routing convergence depends a lot on quality of placement of the design. Clock
Tree Synthesis abbreviated as CTS is one of the most important stages in Place and Route.
The Quality of Result of CTS decides timing convergence power. In most of the ICs, clock
consumes 31-41 %of total power. So the efficient clock architecture , clock gating & clock tree
implementation all those helps to reduce power. During Clock tree synthesis, buffers or inverters
are added in the clock nets to achieve minimum insertion delay and skew, while meeting the
clock DRVs. Various executions are performed during CTS such as CCDO (Concurrent Clock
and Data Optimization) and CTO (Clock Tree Optimization). Once the Clock tree synthesis
optimizations are done, the clock tree is fixed and routed. Further optimizations cannot be done
on the clock tree except either buffer sizing (upsizing and downsizing ) or gate sizing. Hence,
post CTS, only data path can be optimized. The various post CTS optimizations include meeting
DRVs, Setup check & Hold check , Area & Power optimization, Congestion reduction. Routing
create physical connections to all the data signal if clock nets are already routed after clock tree
optimization. There are three stages in routing namely Global routing, Track assignment and
Detailed routing. Once the routing is completed and the parasitics are extracted, the timing
analysis is done which we will be the area of implementation for this project which we will be
looking in detail into in the next sections.

1.4 Project Area

1.4.1 Timing Closure

1.4.2 Choosing a Strategy for Timing Closure

There is no single strategy that ensures quick and easy timing closure; however, a strategy
based on the size and number of timing violations can be useful.

1. To meet the timing requirements of a Logic design by applying certain modifications to
the components in the design.

2. To perform Static Timing Analysis (STA) on the design in order to obtain the timing
violations(setup and hold) occurring in the design.

3. To fix the setup and hold violations by writing appropriate Engineering Change Order
(ECO).
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4. To validate the design whether it can operate in the rated speed (frequency).

Timing closureis the process by which a logic design consisting of primitive elements
such as combinational logic gates and sequential logic gates is modified to meet its tim-
ingrequirements. The modifications include, Logic optimization of the combinational
elements (sizing of the cells). Pulling and pushing of the clock (insertion of buffers in
clock path).

1.5 Static Timing Analysis

To meet the timing requirements of a logic design by applying certain modifications to
the components in the design.

To perform Static Timing Analysis (STA) on the design in order to obtain the timing vio-
lations(setup and hold) occurring in the design.

To fix the setup and hold violations by writing appropriate Engineering Change Order
(ECO).

To validate the design whether it can operate in the rated speed (frequency).

Timing, area, and power constraints drive the operation of synthesis with Design Com-
piler Topograpical and physical implementation with ICC2 Compiler.

1.5.1 Static Timing Analysis Using PrimeTime

Creating a PrimeTime session for a block

The PrimeTime tool reads a gate-level netlist (SDC)File from the synthesis or physical
implementation tool together with the UPF descriptions generated by those tools.

1.5.2 Timing Paths

Every design is designed to operate at a particular frequency.

This frequency attribute determines the operating speed of the design and becomes the
timing aspect.

But designing a circuit for a frequency is not as easy as it is said.

xiii



A lot of timing issues and constraints arise while designing.

Timing closure is the process of fixing all these timing issues and closing the design with
respect to the timing.

To identify the timing issues and fixing them, Static Timing Analysis(STA) is used.

To analyze a particular block, first we need to create a PrimeTime session for the block.
The PrimeTime tool reads the gate-level netlist and parasitic data, and verifies the design
timing using information provided in the logic (.db) library. The PrimeTime takes gate
level netlist, design constraints in the form of SDC file, parasitic data from the parasitic
extraction post routing in the form of SPEF, logic library containing physical data and
information for physically aware ECO generation to generate a PT session.

1.5.3 Analysing the REG to REG paths

Every timing path will have a start point, end point and combinational cloud between
them. The initial steps include launching the PrimeTime shell. You can start a PrimeTime
shell in either the command line interface or the graphical user interface. For the com-
mand line interface, enter the following command at the Linux shell prompt: % pt shell

1.5.4 Steps

For the analysis of paths of a particular block, first we have to restore a particular session
using the respective paths where the session is generated.

A session path is a .analyzedesign link which is specific to an operating condition includ-
ing the process, voltage and temperature. Hence restoring a particular session path lets
us check and resolve the violations in that particular PVT corner. This is done by the
restore session ¡session path¿ command. Once the session is restored we can start ana-
lyzing the reports. Cell delay is the time taken by the logic to propogate from the clock
pin to the output pin. Net delay is the time taken by the logic to propogate from the output
pin of a cell to the input pin of the next cell in the logic path.A report timing command
gives the report of a path having the worst negative slack in the entire design and a path
report which gives the clock and output pins along with delays.

Some of the switches we can use along report timing are as mentioned below

1.5.5 -delay type

Specifies the type of path delay constraint to consider for finding and sorting paths with
the worst slack:
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max (default) - max delay (setup constraint)

min - min delay (hold constraint)

1.5.6 -nworst paths per endpoint

Reports up to the specified number of worst paths per endpoint. The default is 1. A larger
value results in a larger report and more runtime. Allowed values are 1 to 2000000.If you
set -nworst to any number greater than 1, the command automatically does the following:
Implicitly sets -max paths equal to the -nworst setting if the -max paths option is not used
in the command, so that at least one set of multiple paths to an endpoint can be reported.

Implicitly sets -slack lesser than 0.0 if the -slack lesser than and -slack greater than op-
tions are not used in the command, so that only violating paths are reported.

1.5.7 -max paths , max path count

Reports up to the specified maximum total number of paths among all path groups. The
default is equal to the -nworst setting, or 1 if the -nworst option is not used. Allowed
values are 1 to 2000000.

1.5.8 -slack greater than minimum slack

Reports only paths with slack greater than the specified minimum slack value; these paths
have a negative slack better than the specified minimum slack value (or a positive slack
that is farther from causing a violation). This option is intended to be used with the slack
lesser than option to report paths within a specific range of slack.

1.5.9 -slack lesser than maximum slack

Reports only paths with slack less than the specified maximum slack value; these paths
have a negative slack worse than the specified maximum slack value (or a positive slack
that is closer to causing a violation).

1.5.10 -input pins

Shows cell input pins as well as cell output pins in the timing path. As a result, the report
shows the incremental net and cell delays separately at each point, instead of combined.
By default, the report shows only the cell output pins.
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1.5.11 -nets

Shows nets in the timing path. By default, the report does not show nets.

1.5.12 -nosplit

Prevents line splitting. This can useful for scripts that extract information from the report.
By default, the report generates a new line when the text cannot fit in the allotted space in
a column.

1.5.13 -transition time

Shows the transition time (slew) in the path report for each driver pin and load pin, ap-
pearing as an additional column labeled ”Trans”. By default, the report does not show
transition time.

1.5.14 -capacitance

Shows the total capacitance in the path report for each net, appearing as an additional col-
umn labeled ”Cap”. By default, the report does not show capacitance. The reported value
is either the CCS receiver capacitance (the default) or the lumped capacitance, depending
on the report capacitance use CCS receiver model variable setting.

The timing issues are called as Timing violations.

When performing timing analysis, PrimeTime first breaks down the design into timing
paths. Each timing path consists of the following elements:

(a) Startpoint The start of a timing path where data is launched by a clock edge or
where the data must be available at a specific time. Every startpoint must be either
an input port or a register clock pin.

(b) Combinational logic network Elements that have no memory or internal state. Com-
binational logic can contain AND, OR, XOR, and inverter elements, but cannot con-
tain flip-flops, latches, registers, or RAM.

(c) Endpoint The end of a timing path where data is captured by a clock edge or where
the data must be available at a specific time. Every endpoint must be either a register
data input pin or an output port.

1.5.15 Different Types of Timing Paths

Flop to Flop Paths
Input to Flops Paths
Flop to Output Paths
Input to Output Paths
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Chapter 2

BACKGROUND AND RELATED
WORKS

2.1 OVERALL DESCRIPTION

Any VLSI system design flow starts with the formal specification followed by a se-
ries of steps carried out one by one in a sequential flow to finally produce a packaged
IC chip. A typical design cycle is as represented in the flow chart as shown in Figure
2.1.1 The main emphasis of this master thesis is the timing closure at block level

Figure 2.1.1: VLSI System Design Cycle

which is a part of the Physical Design stage of the design cycle. Also the entire
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physical design of a block will also be done to understand the optimization tech-
niques used in the design flow. The timing optimization by performing floorplan
and placement is done here. The first and foremost step in any system design is to
lay down the specifications of the system. System specification, in general is a high
level representation of the system. Architectural design describes the basic architec-
ture of the system. Some of the architectures may be RISC (Reduced Instruction Set
Computer) or CISC (Complex Instruction Set Computer). The system architecture
also defines the number of Arithmetic Logic Units (ALUs), structure of pipelines,
size of caches etc. Next up, functional design identifies the main functional units
and the interconnects between them in a system. In Logic Design, the control flow,
register allocation, arithmetic operations and logical operations of the design that
represent the functional design are derived. Logic Design involves formulation of
the design in the form of Boolean expressions at the RTL using Hardware Descrip-
tive Languages (HDLs) such as Verilog, VHDL etc. which can be used in simulation
and verification. Once after implementing the design using HDL, the functionality
of the design has to be verified. The objective of circuit design is to generate and
develop a circuit based representation of the logic design. Most often the circuit
representation is referred to as the netlist. Once the netlist of the design is there,
steps like Synthesis, Partitioning, Floor-planning, Placement, Clock Tree, Routing
and Timing Closure can be carried out. All the SoCs used today are synchronous in
nature i.e. it is timed or it has a reference clock. Typically there is a single clock
in many systems or there can be multiple clock phases which are generated from
a single external source. Hence all the activities of the chip are synchronized with
respect to the clock that is applied from outside typically. So the clock signal is
used to synchronize the storage elements such as the flip flops. The clock provides
a common reference signal distributed throughout the chip. Since it is distributed
throughout the chip, the total length of the clock net can be pretty large which also
the reason the clock is often referred to as a high fanout net. Logic evaluation begins
at the rising edge of the driving clock. This is due to the fact that when we receive
the rising edge of driving clock, the input coming from previous stage gets stored
in the register. To understand the timing of a digital design, the need for clock in
a design has to be understood. In a digital circuit, nothing is standalone. Every
component is interdependent, that is the outputs of one logic may be input to many
other logics. Wherever there is interdependency, sequencing of the events is neces-
sary and we should have a control over the events. So a control signal is required to
control the events in the digital design. The clock has many components in order to
be defined. Time period, waveform, source and name are some of the components.
There are three important needs for clock.

• Acts as a control input signal to the circuit.

• Sequences the events in the design.

• Determines the operating speed of the design.
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2.2 LITERATURE SURVEY

STA cannot be done manually because there will be lakhs of timing paths in the
design. The Electronic Design Automation (EDA) tools come to the rescue for this
problem. The EDAs will be fed with libraries which will contain the delay infor-
mation of each and every cell in the design. These delays act as constraints to the
timing paths. In reality, the exact time of the arrival of clock signal is not known and
also the chip behaviour. This is mainly because of the environment conditions. The
delay information may vary at each and every point of the environment condition
(Temperature). These variations have to be fed in the EDA tool while simulating so
that after fabricating the chip may perform as it was meant to be designed. These
are the reasons for constraining the design and STA checks whether the chip meets
the constraints given. Constraints form the core part of timing analysis.

2.2.1 TIMING CLOSURE

The SoC must not only follow the geometric requirements but should also meet the
designs timing constraints. The optimization process tasked to meet the timing re-
quirements are collectively referred to as timing closure. Every design is designed to
operate at a particular frequency. This frequency attribute determines the operating
speed of the design and becomes the timing aspect. But designing a circuit for a fre-
quency is not as easy as it is said. A lot of timing issues and constraints arise while
designing. Timing closure is the process of fixing all these timing issues and closing
the design with respect to the timing. To identify the timing issues and fixing them,
STA is used. The timing issues are generally called as Timing violations. There are
three steps in which the STA works. First the design is broken in to sets of timing
paths. Then the signal propagation delay is calculated along each path. Finally, vi-
olation of timing constraints is checked. Dynamic Timing Analysis (DTA) was the
technique used for timing analysis initially. STA is called static because the analysis
is done when the design is stable. The design will be stable when there is no input
given. DTA is dynamic because the analysis is done when the design is active. The
design will be active when it is given inputs. DTA requires a comprehensive set of
input vectors to check the timing paths in the design. It can verify the functionality
as well as timing of the design. It is only as exhaustive as the input vectors are given
because a particular test vector cannot exercise all the portions of the chip.

2.2.2 TIMING PATHS

The end user of a design will have only one concern regarding the timing of the
design that is how long will it take for the output to change for a particular input
given. This timing relationship between two pins of the device is given by timing
arc. Basically, it represents the timing characteristics of the element or block. When
performing timing analysis, PrimeTime first breaks down the design into timing
paths. Each timing path consists of the following elements: Startpoint: The start
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of a timing path where data is launched by a clock edge or where the data must be
available at a specific time. Every startpoint must be either an input port or a register
clock pin. Combinational Logic Network: Elements that have no memory or inter-
nal state. Combinational logic can contain AND, OR, XOR and inverter elements,
but cannot contain flip flops, latches, registers or RAM. Endpoint: The end of a tim-
ing path where data is captured by a clock edge or where the data must be available
at a specific time. Every endpoint must be a register data input pin or an output port.
There are several timing paths which can be divided as per the type of signals such
as data path, clock path, clock gating path and asynchronous path. Unconstrained
paths do not belong to any of the path groups. To report unconstrained paths, set the
timing report unconstrained paths variable to true. This variable enables us to view
the unconstrained paths in the design. Every timing path consists of a startpoint, a
combinational logic network and an endpoint. The time taken by the data to propa-
gate through the logic network is referred to as the delay. This comprises of the sum
of delays of the cells as well as nets along the path. For a single startpoint endpoint
pair, there are multiple paths through which the logic can propagate to the required
destination point. The actual path taken depends fully on the state of the other inputs
along the logic path. Since there are multiple paths for a single startpoint endpoint
pair, the maximum and minimum time for the logic to propagate throughout he spe-
cific startpoint endpoint pair can be obtained. The path that takes the maximum
time for the logic to propagate is referred to as the max path. Similarly, the path that
takes the minimum time for the logic to propagate is referred to as the min path. In
other words, a max path is often referred to as the longest path whereas a min path
is referred to as the shortest path. There are four types of timing paths.

• Flop to Flop Paths
• Input to Flops Paths
• Flop to Output Paths
• Input to Output Paths

Figure 2.2.1: Four types of Timing Paths

Path1 represents the Input to Register path as it starts at an input port and ends at
the data input of a sequential element, Path2 represents the Register to Register path
as it starts at the clock pin of a sequential element and ends at the data input pin of
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a sequential element, Path3 represents the Register to Output path as it starts at the
clock pin of a sequential element and ends at an output port and Path4 represents the
Input to Output path as it starts at an input port and ends at an output port. Except
Input to Output path, all other paths are synchronous paths.

2.2.3 STA CONCEPTS

Timing arc represents the timing relationship between two pins of any device, block
or any boundaries. To understand timing arc the design has to be seen from end user
point of view. An end user may be mobile phone user, laptop user, IP consumer
or standard cells consumer. The end user will have only one concern regarding the
timing and that will be how long it will take to get the output after applying certain
input. So, the end user is concerned about the relationship between different pin-
s/ports of a product. After a lot of simulation and characterization the relationship
between different pins in terms of timing is obtained. Basically, timing arc repre-
sents the timing characteristic of an element or block. There are two types of timing
arcs based on delay and characteristics: Delay arc and Constraint arc. A timing arc
has, Startpoint Input pin, Output pin or Inout pin and Endpoint Always an Output
pin or Inout pin.

Figure 2.2.2: Input to Output Timing Arc

The black box in figure 2.3 is having four input pins and one output pin. Hence,
four timing relationships can be found in this black box. X1-Y1, X2-Y1, X3-Y1
and X4-Y1. The end user will never ask what is inside the black box if the timing
information is provided. But inside the black box there will be nets and cells because
of which there will be two arcs: Cell arc and Net arc.
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Figure 2.2.3: Net and Cell Timing Arc

Timing arc answers the following questions,

• For a particular type of input (rising or falling), what type of output is obtained?
• How much time (delay) the cell will take to respond for a particular input?
• Is there any constraint on any pin?

The first question can be understood by knowing how the pin is logically connected
with the output pin. Logical connection means what will happen for rising input
whether the output falls or rises or remain unchanged. Timing arc answers this with
a property known as Unate. The unateness specifies how the edges (transitions) can
propagate through a cell and how they appear at the output of a cell.

Figure 2.2.4: Source and network latency
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Figure 2.2.5: Positive Skew

Figure 2.2.6: Negative Skew

Figure 2.2.7: Uncertainty in Clock Pulse

It basically constraints the Input Register and Output Register timing path. The
desire latency can also be specified.
PVT (Process, Voltage and Temperature) combination defines the operating con-
dition of the design. The chip should work at even -40C and 100C. Delay is the
most important factor in the timing of a circuit. Different combination of PVTs give
rise to different delays. A timing path will have different delays for different cor-
ners. The design is simulated at different corners of PVT which IC may face after
fabrication.
This affects the oxide thickens and causes fluctuation in dopant and mobility. The
transistor width and length is also affected. The relationship between process vari-
ation and delay. current flowing through the parasitic inductance causes voltage
bounce because of the supply noise caused by it. Usually, a chip will be powered
by a battery or voltage regulator. A battery cannot provide constant supply for long
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period of time and a voltage regulator can also not be consistent for over a period
of time. The relationship between delay and voltage. Temperature around the chip
varies in a big range, which will affect the delay factor of the design. Hence it is
taken in to consideration. When temperature increases, the mobility and threshold
voltage decreases. Delay increases with decrease in mobility and decreases with de-
crease in threshold voltage. In sub-micron technologies, a phenomenon called tem-
perature inversion happens . When temperature increases, the delay will increase.
But when the temperature starts to fall, for some time the delay will decrease. But
after one point the delay will start to increase again because the threshold voltage
will take upper hand and becomes the deciding factor. Previously, the mobility of
electrons would have been the deciding factor. This phenomenon is seen only in the
deep sub-micron technologies.

Figure 2.2.8: Delay vs Process

Figure 2.2.9: Delay vs Voltage
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Figure 2.2.10: Delay vs Temperature

The setup timing and hold timing check constitute the primary checks for any de-
sign.

Figure 2.2.11: Critical Corners for Setup and Hold

On Chip Variations (OCV) are PVT variations that are seen at transistor level.

Figure 2.2.12: False Path
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Figure 2.2.13: Multicycle Path

2.2.4 CLOCK TREE SYNTHESIS

Once the clock trees are built, it undergoes several buffer insertions and subsequent
skew optimizations. An important point to be noted in the case of CTS is the use of
clock buffers in clock path instead of normal buffers. Minimum pulse width is an
important Design Rule Check (DRC) check performed on any design. It is required
to maintain a minimum pulse width for proper functioning of the entire circuit.

The changes in the pulse width can be attributed to the unequal rise and fall transition
delay caused by the circuit. The fall time transition in a clock signal is affected by
the width of NMOS. On the other hand, the rise time transition in a clock signal
is affected by the width of PMOS. Since NMOS has higher mobility than PMOS
due to the presence of free electrons, the fall transition is lesser than rise transition.
Hence the rise time is more than the fall time. If a series of unbalanced buffers are
connected in a circuit, the fall time decreases and rise time increases each time the
clock signal passes through a buffer. In such a scenario, after a certain amount of
time, the clock signal gets absorbed due to reduced pulse width. Hence, to make rise
time equal to fall time of a clock signal, clock buffers are introduced in which we
the width of PMOS is 2-2.5 times the width of NMOS providing a balanced buffer.
An input signal of 50

2.2.5 Skew Optimization

The propagation delay is controlled by the size and location of the buffers.

2.2.6 Buffer sizing

A binary search algorithm is implemented to find the appropriate size of clock
buffers through an iterative process since it affects downstream optimization’s.
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2.2.7 Wire sizing

The size of wire is an important factor as it affects the power consumption and is
prone to manufacturing issues.

2.3 CROSSTALK AND NOISE

Any undesired or unintentional effects affecting the nominal operation of the chip
is called noise. Crosstalk noise can be referred as unintentional coupling of activity
between two or more signals. It is mainly caused by the capacitive coupling be-
tween two neighbouring signals. In nanometer devices, this noise can impact the
functionality of the device or even the timing of the device. There are several causes
for this noise in the chip. The number of metal layers in the chip nowadays have
been increased drastically, because of the technology shrinking. Also, the wires that
are used nowadays are thin and tall rather than wide and tall because of which ca-
pacitance will be more between two neighbouring wires. The standard cell count
is also increased in latest technologies which increases the congestion and causes
lot more interactions. Higher frequency designs have faster edge rates, which will
cause more current spikes and greater coupling impact. Noise margin for the designs
is little because of low supply voltage.

Figure 2.3.1: A Coupled Interconnect Example

The capacitive coupling happens between two signal nets as shown in figure 2.14
and causes switching activity on one of the nets. The signal net that gets affected
is called Victim and the signal net that affects the other net is called the Aggressor.
Cc1 and Cc4 are coupling capacitances between the nets N1 and N2. Cc2 and Cc5
are coupling capacitances between the nets N2 and N3. There are two types of noise
effects caused by crosstalk: Glitch and Delay.
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2.3.1 CROSSTALK GLITCH

In a steady victim signal if the coupling of switching activity of neighbouring ag-
gressors causes a noise, then it is called as crosstalk glitch. It basically affects the
functionality of the design. There are two types of glitch based on the polarity: Pos-
itive glitch and Negative glitch. If the glitch is caused by a rising aggressor then it
is called positive glitch and if the glitch is caused by a falling aggressor then it is
called negative glitch. The magnitude of the glitch depends upon, coupling capac-
itance between aggressor net and victim, aggressors slew, grounded capacitance of
the victim net and driving strength of the victim net. There are four types of glitches
based on the aggressor and victim nets signal position. They are mentioned in figure
2.15. The rise glitch is caused when the victim is low and the aggressor is transi-
tioning from 0 to 1. The fall glitch is caused by an aggressor transitioning from 1
to 0 while the victim is already high. Similarly, the overshoot happens when victim
is high and aggressor goes from 0 to 1 and undershoot happens when the victim is
low and the aggressor goes from 1 to 0. Not all glitches are hazardous. A glitch
is differentiated as hazardous or non-hazardous based on its parameter. It has two
parameters: Height and Width. Figure 2.16 shows the safe glitches and potentially
hazardous glitches. As long as the glitch height remains under the margin shown in
figure 2.16, it will not affect the design. Also if the width of glitch is more, then it
is also considered to be safe.

Figure 2.3.2: Types of Glitches

Figure 2.3.3: Glitches based on Noise Margin
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2.3.2 CROSSTALK DELAY

Crosstalk delay refers to the change in timing caused by the switching activitys
coupling of the aggressor net on the victim net. This basically happens when both
the aggressor and victim nets are transitioning. But in the case of glitch victim
will be steady. The delay is caused by the charging current through the coupling
capacitance when the neighbouring net is switching. The direction of aggressor net
switching determines the magnitude of the delay induced. Without any crosstalk
if the delay is calculated, then the total coupling capacitance is provided by the
cell driving the aggressor net. The charge required for coupling capacitance will
be more if the aggressor and victim are switching in opposite direction. Based on
the magnitude of delay induced by the aggressor net, there are two types of delay:
Positive crosstalk and Negative crosstalk. Positive crosstalk delay is a scenario in
which the aggressor will be transitioning from low to high and the victim net will be
transitioning for high to low. This opposite direction switching increases the delay
for the victim net. This impacts both the driving cell of the net and also interconnect
by increasing the delay in both of these. the positive crosstalk delay in which the
delay increase has been shown, thereby causing timing error. Negative crosstalk
delay is caused when both the aggressor and victim are switching from low to high.
This kind of transitioning reduces the delay on the victim net. It impacts both the
driving cell and interconnect by reducing the delay in both. A depiction of the
negative crosstalk delay. Both the crosstalk delays affect the timing.

Figure 2.3.4: Positive crosstalk delay
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Figure 2.3.5: Negative crosstalk delay

2.3.3 PRIMETIME STA RUN
i. Read in the design data, which includes a gate-level netlist and associated logic

librarie.
ii. Specify timing and design rule constraints.

iii. Specify clock characteristics.
iv. Specify timing exceptions.
v. Specify the environment and analysis conditions such as operating conditions

and delay models.
vi. Specify case and mode analysis settings.

vii. Back-annotate delay and parasitics .
viii. Apply variation (optional).

ix. Specify power information.
x. Specify options and data for signal integrity analysis.

xi. Apply options for specific design techniques.
xii. Check the design data and analysis setup.

xiii. Perform a full timing analysis and examine the results.
xiv. Generate engineering change orders (ECOs) to fix timing violations or recover

power.
xv. Save the PrimeTime session.
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Figure 2.3.6: STA in Design Flow

2.3.4 ENGINEERING CHANGE ORDER

In the PrimeTime Suite, an Engineering Change Order is an incremental change
in chip design to reduce the various timing violations. The ECOs are imple-
mented after loading the PrimeTime sessions of the particular blocks post the
STA run. The violations include DRCs, timing violations and power violations.
The purpose of PrimeTime Suite is to search and find these violations and to
provide fixes for these issues in the design. The methods adopted to fix these
violations include cell resizing, replacement of cells or inserting buffers. The
types of violations to be fixed primarily include setup hold violations and DRC
noise violations. The primary commands used to generate ECOs for fixing vi-
olations are fix eco drc, fix eco timing and fix eco Power. These PrimeTime
commands are used for fixing violations and optimizing the design by improv-
ing the timing requirements providing ECO fixes. While implementing fixes
for violations, one of the important factor to be taken care of is the order in
which the fixes should be carried out. This is due to the fact that timing may
degrade in related paths due to the fixes made or ECOs implemented. It is also
seen that setup and hold fixing does not degrade DRC violations such as max
capacitance and max transition violations, Whereas ECOs implemented to fix
DRC violations can degrade setup or hold violations, since DRC fixing has the
highest priority. Since hold fixes preserves setup slack and setup fixes cause
a slight increase in the hold violations, it is always seen that the DRCs fixes
are given the highest priority followed by setup violation fixes and then hold
violation fixes.
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2.3.5 UNFIXABLE VIOLATIONS
As a matter of fact, all the existing violations cannot be fixed by the tool itself
due to some or the other design constraints. The fix eco timing and fix eco drc
commands feature a verbose switch which when exercised reports the unfixable
violations and the reasons that they are unfixable. It may also be noted that to
use this feature alongside the fix eco timing command, the eco report unfixed
reason max endpoints variable has to be set to a positive integer. A timing ECO
unfixable violation reason report can be generated without performing ECO
changes which may provide feedback and guidance on how to address these
unfixable violations. To get a full estimate of all the unfixable violation reason
report, the fix eco timing command with the estimate unfixable reasons switch
can be used. The unfixable violations are often indicated by pre-fed symbols
or alphabets in the report generated that gives the specific reason. Some of the
reasons can be summarized as given below,

A There are available library cells outside the area limit.
B Delay improvement is too small to fix the violation.
C - The violation is in clock network.
I Buffer insertion with the given library cells cannot fix the violation.
S Cell sizing with alternative library cells cannot fix the violation.
T Timing margin is too tight to fix the violation.
U UPF restricts fixing the violation.
V Net or Cell is invalid or has dont touch attribute.
W Fixing the violation might degrade DRC violation.
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Chapter 3

PHYSICAL DESIGN

For every VLSI systems, physical design is a process of instantiating each
and every design components with the corresponding geometric representa-
tions. The physical design flow starts once the design and verification teams
complete the functional and logic design and the design is thoroughly verified
for bugs and errors. Essentially, physical design plays a significant role in the
performance of the SoC due to factors such as performance, power, area etc.
The various parameters that affect the competence of an SoC in the market are
speed which is derived from the operational frequency, the area it occupies since
smaller SoCs can be integrated into a variety of mobile devices and power since
low power consumption leads to longer usage time all of which factors can be
optimized to achieve a better yield during the physical design stage. Physical
design is split into several stages namely Partitioning, Floorplanning, Place-
ment, Clock Tree Synthesis, Routing, Timing closure etc. Each of the steps
are carried out in succession beginning with Partitioning and so on. Physical
design is given as a chapter in this thesis because timing optimization is done
during this process.

3.0.1 Partitioning
The process of splitting up the entire circuit or system into smaller subsystems
or modules is referred to as partitioning. Floorplanning The process of arrang-
ing the location of hard IPs or macros, the external ports and sub circuits or
modules is referred to as Floorplanning. Placement The process of finding and
determining the spatial location of each and every cell within a particular block
is referred to as Placement. Clock Tree Synthesis The process determining
the buffering, gating and routing of the clock signal to meet the required clock
skew and clock delay estimates is referred to as CTS. Routing The process
of allocating resources for interconnections between different metal layers and
routing tracks in channels is referred to as Routing. Timing Closure The opti-
mization of performance of the SoC is carried out by specialized placement and
routing techniques and implemented ECOs is collectively referred to as timing
closure.
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3.0.2 COMPONENTS IN THE DESIGN

Macro or Hard IP:

The functional logic in a design are broadly classified as Soft IPs and Hard
IPs. The Soft IPs are referred to as reconfigurable logics which can be changed
or modified as per the user requirements and design constraints as and when
required. The Hard IPs are large sets of non-reconfigurable logic which perform
a reusable functionality. Usually, they possess read only characteristic in the
design. A macro cell can vary in size anywhere from a couple of standard cells
to a large embedded processor or a memory block such as RAM. Technically a
macro is a cell without pre-defined geometric dimensions. The macros can be
placed almost anywhere in the entire area of the block. Placing the macros are
usually dependent on factors to ensure minimum routing distance to the ports.

Standard Cells :

The design of each SoC is carried out using different methodologies such as the
Standard Cell methodology or Full Custom methodology. The current method-
ology implemented for this SoC is a standard cell methodology. This methodol-
ogy involves the use of pre-designed standard cells fed in the library contrary to
the Full Custom methodology. A standard cell is a group of logic gates that per-
form a Boolean function. It has a pre-determined functionality. Its dimensions
are a multiple of library specific fixed dimensions.

Via :

Via is a connection between metal layers usually used to connect routing struc-
tures on different metal layers. Pin is an electrical terminal used to connect a
component to the external environment and it can be an input pin or an output
pin based on the functionality which they serve. Port represents a group of pins
interacting with the external world/environment. It can be in, out or inout based
on the directional functionality. Net is a wired interconnect indicating a phys-
ical representation of connection between two cells in a layout. Metal layer is
a process level in SoC manufacturing patterning the different components in
a design. During physical design, the components of a design are assigned to
different metal layers.

Voltage area :

Voltage area is also called as power domain. It is a specific area in the design,
which is connected to a particular voltage level. It is used in multi-voltage
design, where different voltages are used for low power purpose. Bounds are
implemented at specific areas in the design where there is a requirement of a
different power supply other than the existing one or when there is a need to
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confine certain amount of cells. For example, where ports are to be powered by
the corresponding power supply other than the parent supply.

3.0.3 INPUTS REQUIRED FOR PHYSICAL DESIGN

Synthesis and APR are the two important steps in physical design. The entire
process requires a proper set of inputs without which the design is not possible.
The inputs will come from different teams. The design formulated as the RTL
logic code is verified and released by the Front End to Back End team. The
clock information comes from the clock team. Full chip information will also
be needed for layout data. So a full chip layout team will provide the layout in-
formation (boundary and IO port placement). And a full chip netlist team will
provide the additional RTL information needed. The tags for all these informa-
tion are kept in modelling file. Since physical synthesis is done, the placement
information of the cells, IO ports and other components of the design are given.
The APR requires certain inputs from the output of synthesis. Netlist, UPF,
SDC, DDC and standard cell DEF are some of the important inputs required.
APR also requires the placement information that were used in synthesis.

3.0.4 SYNTHESIS

The technology independent Register-Transfer Logic is synthesized and con-
verted to technology dependent netlist satisfying constraints during the process
of synthesis. The Synopsys Design Compiler and Design Compiler Topograph-
ical are used to carry out synthesis. The Design Compiler deals with only
logical synthesis whereas the DC Topographical performs physical synthesis.
The inputs required for synthesis include logical libraries, physical libraries
and timing scan constraints. The logical libraries include GTECH, Symbol
and DesignWare libraries. The GTECH is a virtual internal library of Synopsys
Inc. After the elaborate step in synthesis, the design gets mapped to this vir-
tual library before it is mapped to a technology library. This library describes
the basic functionality of the cell and comes handy to understand how the de-
sign gets mapped in the early stages itself. The Symbol library has different
versions for different EDA vendors and is also an internal library of Synop-
sys Inc. This library contains different symbol shapes of the various cells that
are mapped to the GTECH cells and which at a later stage would be mapped
to the tech library. The physical libraries include DesignWare library and the
standard cell library. The DesignWare library gives practical implementation
for any and all of the complicated function for example, multiplier, divider etc.
Similarly the standard cell library is a technology dependent library provided
by the foundry to the designer. It contains the logical, timing and physical in-
formation about all the cells that are used during the compile stage. There are
certain important terminologies in the synthesis process. Search path: The path
to the library or lib files are specified in the search path. The Design Compiler
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uses this path to search for the libraries that are specified in the design. Tar-
get Library: During the compile stage of synthesis, the Design Compiler uses
the libraries specified in this variable. Link Library: The references of all the
files in the design are resolved using the libraries specified here during link-
ing. Physical Libraries: These libraries are used for physically aware synthesis
since these libraries contain the physical information of all the cells in the de-
sign. Macro/Hard IP library: The IP definitions and interface paths used in the
RTL requires the respective library files to be available as a content of the link
library.

3.0.5 STAGES IN SYNTHESIS

Import Design:

In this stage the RTL logic is read one by one and is converted to technology de-
pendent netlist which in other words is the netlist mapped to the GTECH cells.
This step is bifurcated into two separate processes and executes two important
commands i.e. Analyse and Elaborate. The analyze command compiles the
RTL files and simultaneously checks for errors and mismatches such as miss-
ing definitions, syntax or semantic errors. The elaborate command elaborates
all the RTL Verilog files and converts them into a netlist. Once this stage is
completed there are two important checks to be performed before we carry out
the subsequent stages. They are the link command and the check design com-
mand. The link command gives information regarding any unmapped cells in
the design and appear as black-boxes. The check design command reports the
health checks such as errors related to the black-boxes in the design. Some of
the errors reported in the design may be shorted outputs, multi-driven nets, un-
clocked registers etc. These reports are to be thoroughly checked and feedback
must be provided to the front end team as and when required.

UPF:

The UPF file contains all the information related to the power supply domains.
The UPF is also a methodology to separate out the functional information from
the power information. It contains the power domains, power supplies, special
cell policies and power state tables. In this stage the ¡design name upf¿ file
is read into the Design Compiler. The check mv design command is executed
post reading of UPF files. This command generates a report of the health of the
design after UPF implementation. It dumps out a report containing all the issues
related to missing isolation cells, power supplies, missing level shifters etc. All
the errors we face in this report are cleaned working in close collaboration with
the front end team before we can proceed further.
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Uniquify:

In this stage, the tool copies and renames any multiply referenced design so that
each instance references a unique design. Subsequently the original design is
replaced with new and unique designs.

Constraints:

: In this stage, all the information related to the constraints in the design are
specified. The constraints include timing, area and power constraints and are
responsible for the quality of the synthesized design. It also specifies the op-
eration condition constraints. All the design constraints are either provided
in a Synopsys design constraint file or are fed as a group of files that can be
sourced individually. The constraints related to timing include the definitions
of clock, clock uncertainty, clock groups, clock latency, timing derates, timing
exceptions etc. If the design comprises of LBIST / MBIST cells, the corre-
sponding constraints must be provided for the control and correct functioning
of the blocks.

Compile:

In this stage, the mapping of design to a technology dependent library is imple-
mented. Once this stage is complete, all the cells which were till now mapped
to the GTECH library are mapped to technology libraries, Also the design is
optimized in this stage to meet the timing, power and area constraints that have
been specified earlier. The check design and check mv design reports should be
checked and must be clean.

Insert DFT:

The synthesis flow also introduces insert DFT stage to enable scan chain inser-
tion as per the recommended rules.

Ungroup:

In this stage, the sub designs of a given level of hierarchy is merged into the par-
ent cell or design. This stage removes the hierarchical boundaries, improves the
timing, reduces the levels of logic (delay based auto ungrouping) and improves
the area by sharing logic (area based auto ungrouping).

Re-timing:

The tool carries out optimization in this stage by moving the registers forward
and backward across the combinational elements in a circuit. It is categorized
as forward re-timing and backward re-timing. Forward re-timing removes a
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fixed number of register from each input of a gate and inserts the same num-
ber of registers at the output. Similarly, backward re-timing removes a fixed
number of registers from the output of a gate and inserts it at the front of each
gate. This stage is implemented owing to the advantages it brings to the logic
optimization. It minimizes the clock period of the circuit and minimizes the
number of registers in the circuit. It also reduces the power consumption of the
circuit.

Syn final:

The outputs of each of the stages in synthesis are dumped in the outputs di-
rectory folder which will be provided as the inputs for APR flow. The reports
generated are dumped in the reports directory. Other stages include functions
such as removing unnecessary registers that do not drive any load, eliminating
registers in a design that never changes its state owing to the constant value on
one or more input pins. Also some of the registers can be replicated to optimize
timing QoR reports, congestion and fanout issues. Post synthesis, the design
is taken to the floorplanning stage and APR flow is executed in Synopsys IC
Compiler 2.

3.0.6 APR FLOW
The outputs of the synthesis stage are fed as inputs for the APR flow beginning
with floorplanning. The IC Compiler 2 reads the netlist, UPF from synthesis,
floorplan boundary, third party IPs or macro placement and IO port placement
information from the respective files as and when the ICC2 is launched. Other
inputs include DEF file, timing constraint files in SDC, LEF, libraries etc. The
APR flow comprises of stages which are detailed in the upcoming sections.

Floorplanning:

Floorplanning is the most important step in backend VLSI design. A good
floorplan can give a good chip performance whereas a bad floorplan can affect
the timing and performance of a chip adversely. Power-planning is a method
adopted to build the power supply network that includes proper placement of
power and ground nets.
The hard blocks have fixed area and dimensions whereas the soft blocks have
fixed areas but dynamic aspect ratios including their positions. Ideally, this
stage also ensures that each of the modules are assigned a particular shape a
physical location to facilitate gate placement. In this stage, also each pin hav-
ing an external connection is assigned a location for the purpose of routing of
internal and external nets. The design of floorplan is to optimize the locations
as well as the aspect ratios of individual blocks to derive desirable floorplan
attributes. The location of macro or hard IPs, location of ports and location
and dimensions of voltage areas are finalized in the floorplan. The ports are
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classified based on the respective input power supply. The UPF contains criti-
cal information about the power domains in the design. The voltage areas are
created based on the positions of I/O ports, cells that are to be in the respective
power domain and routing connections to the pins to minimize the use of always
on buffers. The I/O ports are aligned as per the pin connections by analysing
the fly lines so to minimize the routing distance. The macros in the design are
placed in order to avoid congestion and routing shorts. For ports placed in a
different power domain, secondary power grids can be created in the form of
bounds to facilitate optimized routing. The bounds are created by sourcing the
required bounding box coordinates in the PRE-floorplan and POST-floorplan
hookup files. The check pin placement is a mandatory command that executes
DRC checks for ports to check and analyze for any pin shorts, technology spac-
ing or layer violation issues. After power planning and voltage area creation,
the files containing the location information of I/O ports, macros and voltage
areas are dumped out and rewritten. This completes the floorplan of the block.

Placement:

Once the design completes the floorplan stage, the standard cells or logic ele-
ments within each block is placed with the objective of maximum optimization
by minimizing the length of connections between elements. The primary ob-
jective of this stage is to assign location and orientation to all the elements in a
circuit within the given layout, following the constraints as well as fulfilling the
optimization goals. This stage can further be classified as global placement and
detailed placement. Global placement involves assignment of general locations
to all the objects within a circuit whereas detailed placement refines the place-
ment by moving object locations to legal cell sites enforcing non-overlapping
constraints. This detailing of cell placement enables highly accurate values of
delay in the circuit and optimizes timing. Gates, standard cells and macros are
rectangular in design and are represented by nodes whereas nets are represented
by edges. Also, some of the elements might have fixed locations whereas will
constitute the movable group. The primary objective of global placement is
overall uniform density distribution. Hence some overlaps between objects are
allowed to prioritize density uniformity in the design, Cell legalization aligns
all objects within the rows and columns removing overlaps by minimizing dis-
placements from globally placed locations. Detailed placement provides an
incremental change in the location of all cells by performing operation such as
swapping objects or shifting objects in a row to create space for other objects.
Typical runtime for global as well detailed placement are similar whereas the
memory consumption for global placement is much more than required for de-
tailed placement. The output of placement should be a well laid layout where in
all nets in a design can be routed simultaneously. In other words, the performed
placement must be efficiently routable. Electrical effects including delay and
crosstalk should be considered during placement for a better optimized design
and routing quality. Once the placement is complete, full chip routing is per-
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formed in three stages i.e. global routing at a higher level, detailed routing at a
lower level and timing driven routing.

Global Routing:

The purpose of global routing is to connect the pins with same electrical poten-
tial using physical wires. Post placement, the layout is represented as routing
regions. . A sequence of horizontal or vertical channels used by the signal
net where the adjacent tracks are connected by inter-layer vias is referred to as
a route track. Similarly, the physical region constituting the routing tracks or
channels are referred to as the complete routing region.
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Chapter 4

TIMING CLOSURE
METHODOLOGY

Timing closure is done by analysing the design with respect to the timing as-
pects of that design and it involves fixing all kind of timing violations. For
analysing the design STA is used.
There are two stages in the design flow in which the methodologies for timing
closure are applied. Post-ICC/Signoff stage and Pre-signoff/ICC stage. In the
signoff stage, the design will be in ECO mode. The design will be frozen
for further optimization in the floorplanning, placement or in the route stage.
Hence, the timing fix will be done by writing ECOs. In the pre-signoff stage,
the design will be in optimization mode. The timing fixes can be done by
changing the floorplan, placement and route of the design. Usually, most of the
timing violations will be fixed in ICC stage of the design flow.

4.1 POST-ICC/SIGNOFF STAGE
In this stage, the timing violations are fixed by sizing cells, replacing cells or
inserting buffers and the fixes are done once the design has been out of the
APR flow. All the commands to make these changes are given in the ECO and
is performed on a small portion of the chip to prevent disturbing the placement
and routing of the rest of the chip. Loosely, ECO is a TCL file that contains the
necessary commands for fixing the timing violations. Each and every violation
has its own methodology to fix it. The most prominent violations are setup
hold violation, transition violation, capacitance violation, crosstalk noise and
crosstalk glitch. In these, the transition and capacitance violation comes under
DRC violations.

4.1.1 SETUP HOLD VIOLATION FIX
The fixing can be done in two areas Data path and Clock path. Data path
optimization is the technique used on data path in which the standard cells
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will be upsized (increase the drive strength) or downsized (decrease the drive
strength). Clock pulling and clock pushing is the technique used on clock path
in which clock buffers will be inserted or removed from the clock path. Clock
path should be touched only if there is no scope for data path optimization.
Clock is a high fan-out net, so a change in clock path might affect the entire
design. Methods to fix setup violation are given below.

Methods to fix Setup violation are given as

• If the drive strength is low for increase and decrease drive strength , change
the drive strength with Upsizing the standard cells (increase the drive strength)
in data path.

• Pull the launch clock uses if there is no chance in data path.
• Push the capture clock uses if there is no chance in data path.
• Removing buffers from data path (hold margin should be checked).
• VT swap Replacing high VT cells with low VT cells.
• Replacing buffers with two inverters placing farther apart so that delay can

adjust.

buffers with two inverters placing farther apart so that de
• If the drive strength is high for increase and decrease drive strength , change

the drive strength with Downsizing the cells (decrease the drive strength)
in data path.

• Pulling the capture clock uses if there is no chance in data path..
• Pushed the launch clock uses if there is no chance in data path..
• Inserting buffers/Inverter pairs/delay cells to the data path.
• By increasing the wire load model, we can also fix the hold violation.

Figure 4.1.1: Setup time and Hold time
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4.1.2 TRANSITION AND CAPACITANCE VIOLATION FIX

In Primetime echo G MAX TRANSITION command will display the maxi-
mum transition limit of the design and report timing -trans will show the tran-
sition values of the path. A transition violation in a timing path makes the data
to arrive late by inducing more delay and thereby causing a setup violation. It
can be fixed by following steps.

• Upsizing the driver cell thereby reducing the delay induced by the cell.

• Decreasing the net length by moving cells nearer or reducing long routed
net.

• Adding Buffers in the net which will break a long net in to smaller nets.

• Increasing the width of the route at the violation instance pin. This will
decrease the resistance of the route and fix the transition violation.

4.1.3 CROSSTALK GLITCH AND CROSSTALK DE-
LAY FIX

Crosstalk noise is caused by the building up of capacitance between two
neighbour nets. By preventing this capacitance built up and by preventing
the formation of aggressor net that is by nullifying the effect of switching,
this problem can be avoided. The timing reports of PrimeTime will already
contain the crosstalk delay information. For the glitch information separate
noise report is generated. There are several methods to fix the timing vi-
olation caused by the crosstalk noise. But first the way how STA will do
setup check and hold heck with crosstalk enabled has to be understood. In
addition to fixes provided for crosstalk noise, there are methods to prevent
them before occurring.

4.1.4 SETUP AND HOLD ANALYSIS WITH CROSSTALK

4.1.5 PREVENTION OF CROSSTALK NOISE

Crosstalk noise is very critical in nanometer designs. Instead of fixing them
after their occurrence, if there is a way to prevent it from occurring then that
should be capitalized properly. In the physical design phase itself there are
techniques that can be used to prevent the crosstalk noise. This will help to
improve the timing.
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Shielding:

Spacing of wires:

Guard ring:

4.1.6 PRE-SIGNOFF/ICC STAGE
In this stage, most of the timing violations are fixed by physically optimizing
the design in floorplan, placement or route stage. For all the designs, timing
closure cannot be achieved in this stage. But the violations can be fixed as much
as possible and after that the design will be frozen for any physical changes or
optimization. All the options for timing fix in this stage are performed during
the APR flow. In this stage ECOs are not used for the fixing of violations. Not
any incremental change is done during this stage.

4.1.7 EFFICIENT FLOORPLAN
Floorplan is one of the reproving and important step in physical design. Timing
violations can be prevented by a good floorplan. It’s better to understand the
basic design of Floorplan.

4.1.8 MACRO PLACEMENT
A design consists of standard cells, macros, IO ports, boundary cells, voltage ar-
eas and upf components. Floorplan decides where all these components should
be located in the design. The most efficient practice of the placements of these
components is placing all the standard cells in the core area all the macros near
the boundary of the design. The pins of the macros should be facing the core
area and the boundary so that the routing can be done effectively. In this way
a good timing can achieved in the floorplan stage of the design itself. The ori-
entation of the macro can also be changed if there is any timing violation is
seen. There should also be a minimum spacing between two macros so that the
power rails can be routed properly. show below how effectively macros shall
be placed in a design.

4.1.9 IO PLACEMENT
The IO ports are considered to be pins for the blocks through which it commu-
nicates with the external world or other partitions. All the IO ports are placed
on the boundary of the design only. IO port optimization is a technique through
which port-pin alignment is achieved. This paves way for better timing. In
IO port optimization the ports of the design and the pins inside the design are
aligned in such a way that there is only a minimum amount of distance between
them. Hence, routing can be made efficiently utilizing less amount of metal.
The factor that ports will be talking to the neighbouring partitions should also
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be considered during IO port optimization. Also, if the port size is same as that
pin size then chances of getting DRC violations during routing is very less.

Figure 4.1.2: Efficient macro placement and orientation

4.1.10 STANDARD CELL PLACEMENT
In modern design, the number of standard cell count in a design has increased
drastically. Placing them one by one is a tedious task. Hence, some constraints
are given for placing them. A core area is allocated for standard cells placement
and all the cells are confined within that area. Also there is one technique called
bound creation. Bound is an imaginary area in the design in which a group of
cells are confined within. In this way the distance between two cells will be
reduced and routing can be done with minimal metal. This ultimately improves
the timing. If the placement of a cell is bad then it can be moved manually to a
better place.

4.1.11 CTS
There are two important steps in the CTS. They are clock tree building and
clock tree balancing. Once the CTS is done, then the skew and latency reports
should be analysed. If they are found to be worst then the clock tree has to be
rebuilt to make them better.
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Figure 4.1.3: Typical H-tree

Clock tree optimizations can be done by buffer sizing, gate sizing, High Fan
out Net (HFN) synthesis and buffer relocation.

xlvi



Chapter 5

TIMING CLOSURE
IMPLEMENTATION

5.0.1 POST-ICC/SIGNOFF STAGE IMPLEMENTATION
The implementation was carried out in two stages, post ICC and ICC. In post
ICC the design will be in ECO mode that is the violations are fixed in an in-
cremental way. Synopsys PrimeTime tool is used in this stage to analyse the
timing paths and source the ECOs.

5.0.2 REG TO REG TIMING PATH ANALYSIS
To analyze the reg to reg timing path, first the path needs to be reported in the
PrimeTime session. For this the PT session has to be restored first. The com-
mand restore session is used. The command report timing is used for viewing
the path. The exact syntax is report timing from start point to end point. This
will in default show the max path. For min path delay type min should be added
at the end of the command. Every reg to reg timing path will have a start point,
end point and combinational cloud between them.

Figure 5.0.1: A typical Reg to Reg timing path

xlvii



5.0.3 HOLD VIOLATION FIX
Hold violation occurs when the data arrives early at the end point. This is
prominent in the min corner where the delay will be less. The arrival time of
the data has to be delayed to fix this and by inserting buffers at the end points
this can be achieved. But this can be attempted only if the path has enough
setup margin in the max corner. Paths that dont have enough setup margin are
called min-max path and they are removed from the list, as this process is only
for paths with setup margin. Also the block should have enough area to add
new buffers. A TCL script can be written to insert buffers at all the endpoints.
The inputs given to the script are unique endpoints list with slack information,
new buffer name and the delay value of it. These information are required to
fix the hold violation. The concatenation command is used on the PrimeTime
reports to generate the endpoints list. Syntax is cat path to reports/block name/
— egrep pattern — grep pattern. There may be repetition of endpoints in the
list obtained using cat command. To get unique endpoints perl script can be
used which will sort the list and eliminate the same endpoints. Using another
tcl script the endpoints list is assigned to a variable. The endpoints must be
reported in max corner using report timing through endpoint to check whether
enough setup margin is there. Buffer information should also be given to the
script. Finally the tcl script should be sourced in the PT session and redirect the
output to a new file. The command source script.tcl ¿ eco.tcl is ran. An ECO to
fix the hold violations is the first output of running the script. The exact syntax
would be insert buffer endpoint name buffer name. After sourcing the ECO, an
updated design with some of the hold violations fixed is obtained. Fixing hold
violation has a negative effect on setup margin and vice versa.

Figure 5.0.2: Hold violations status before and after ECO

5.0.4 BUFFER ANALYSIS
As a part of fixing hold violations, the analysis of a buffer performance is to
be done. The delay induced by the buffer that is to be inserted in the endpoint
must be known since buffer insertion technique is used for fixing hold viola-
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tions. Only three buffer variants are allowed to be used for fixing hold viola-
tion. Buffer with low drive strength (buf07), Buffer with medium drive strength
(buf13) and Buffer with high drive strength (buf27). The delay induced by these
buffers can be found by inserting these buffers in the design using insert buffer
command. After adding these buffers the updated timing path can be reported
and the delay value can be seen. This information is used while fixing hold
violation.

Figure 5.0.3: Delay information of the buffers

The above table shows the delay information of the buffers that are to be used
in the hold violation. It can be seen that the buffers induce more delay in the
max corner than in the min corner. So, there should be enough setup margin
in the max corner. Usually 1.5 times of the min slack is required as the setup
margin.

5.0.5 SETUP VIOLATION FIX
Setup violation occurs when the data is arriving late at the end point. This is
checked at the next edge of the capture clock with respect to the launch clock.
This is prominent in the max corner because the delay will be more. To fix
this the data should be made to arrive early by reducing the delay incurred by
the data path (for data path optimization). The violating path is analysed first
to find the scope of fixing it in data path. Cells causing large violations are
upsized. High VT cells can be replaced with low VT cells but this will increase
the leakage power. ECO is written with size cell commands for the fix and is
sourced in the PrimeTime session. The exact syntax would be size cell cell to
be replaced new cell. An updated design with fixed setup violations is obtained
after sourcing the ECO.
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Figure 5.0.4: Setup violation fix status before and after ECO

5.0.6 TRANSITION AND CAPACITANCE VIOLATION FIX
Fixing transition and capacitance violation is similar to fixing setup and hold
violations because these will ultimately be reflected in the setup and hold checks
as one of the violations. If the transition and capacitance value of a net or cell
exceeds the maximum limit specified in the design, then it will be marked as
a violation. These violations come under DRCs and are fixed first. A bad
transition in data path causes more delay thereby making the data to arrive very
late. This is bad for setup and may cause setup violation. But in case of hold
check this bad transition will be friendly as it is delaying the data, which is
good for hold check. It will be masking the hold violation. If this violation
is not addressed at the initial stage then while fixing it at the final phase, it
will cause hold violations. Transition violation can be seen at data transition as
well as clock transition. The driver cell of the bad transition net is noted and
is upsized by using the size cell command. Buffers are inserted in long nets,
which will break them in to small nets using insert buffer command. But for
inserting buffer, the availability of enough setup margin has to be made sure.
The same fixes apply for capacitance violation also. Unlike transition limit, the
limit for capacitance in the design will be for both maximum and minimum. But
here the fixes have been given only for violations crossing the maximum limit.
There were only negligible amount of minimum limit capacitance violation.
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Figure 5.0.5: Transition violation fix status before and after ECO

Figure 5.0.6: Capacitance violation fix status before and after ECO

5.0.7 CROSSTALK NOISE FIX
The fix for crosstalk delay and glitch is done in both the pre-signoff and signoff
stage. The help of both the stages are needed. The STA tool using the setup and
hold analysis methods for crosstalk will provide the delay information. The
total crosstalk delay (sum of all the individual paths crosstalk delay) in that
design is calculated. The glitch details are also provided by the STA tool by
using the timing windows of the aggressor net. The highest glitch magnitude
and the aggressors responsible for it in a group of aggressors are obtained. This
analysis is done in the signoff stage.

Figure 5.0.7: Crosstalk delay fix status
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5.0.8 CONTEXT BASED SESSION CREATION FOR A BLOCK
Context based timing session is a normal PrimeTime session which will have
the context information. The latency values in this session will come from the
full chip timing team and the value will be of full chip level. This is basically
done to achieve better Turnaround Time (TAT) as the time required to update the
design in block level is very much less compared with full chip level. Context
is based on a synopsys technology called HYPERSCALE. The context infor-
mation is provided by the full chip level team. If the violation is seen in block
level and full chip level, then a fix in block level will itself fix the violation
in full chip level. By this the ECO can be verified quickly and ultimately the
design will be closed quickly achieving the TAT. Creating a session requires
certain input. Since it is context based session, the context information is the
first and foremost input required. The HYPERSCALE variable is enabled for
this process. In the working area, netlist, spef, upf and other timing information
are saved. Session creation command is run finally. The output of this process
is the context based session for the particular block which can be found in the
working area. If correlation is done between this session and full chip session
then there will be no discrepancy. Now this session can be given as input to the
PT-ECO.

Figure 5.0.8: Crosstalk glitch fix status

5.0.9 CORRELATION OF BLOCK AND FULL CHIP LEVEL
SESSIONS
The slack value of a path may differ in block level compared to full chip level.
This discrepancy is observed by correlation. Both block level session and full
chip level session are restored. A violating path is taken and reported in both
the sessions and then observed. Three scenarios were observed.

• The path is violating in both the levels with a small difference.
• The path is violating in full chip level but meeting in block level with huge

margin.
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• The path is violating in full chip level but in block level the same path is
unconstrained.

These scenarios are occurring because of the discrepancy between block level
and full chip level. In block level the timing information may not be complete.
For example, clock to the block may be originating from a different block (top
module) so there will be latency. This latency information will be provided in
full chip level as it is seen from the top. But in block level this information is
not present as it is not seen from the top. Only the latency information from the
port of the block to clock pin of flop will be provided.

Figure 5.0.9: Correlation Observations

5.0.10 PRE-SIGNOFF STAGE IMPLEMENTATION
In this stage the timing fixes are done by making changes in the floorplan and
placement of the design because the design is implemented physically. Also,
the timing is checked after each and every stage and is optimized there itself.
Synopsys ICC 2 compiler is used in this stage for the physical implementation
of the design.

5.0.11 TIMING ANALYSIS AFTER EVERY STAGE
Since the design is being physically implemented in this stage, it is better to
check timing after each and every stage. If most of the violations are fixed
in this initial stage itself then in the post-ICC stage it will be easy to meet
the timing. Mostly the timing is checked after synthesis, placement, CTS and
routing. First a full run is done right from synthesis to route. If the timing is
bad in synthesis then there is no use of going in to floorplan, placement and
routing. The QoR reports after those four stages is given in table.

Figure 5.0.10: Timing QoR after every stage
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5.0.12 TIMING OPTIMIZATION IN SYNTHESIS

Figure 5.0.11: Timing Before and After Increasing Cost Function

5.0.13 TIMING OPTIMIZATION IN FLOORPLAN
The timing after placement is also looking bad from table aboveSo, optimiza-
tion must be done after placement stage also. In floorplan, the most important
steps are macro placement, voltage area creation and IO port placement. By
efficiently doing all these steps the timing can be improved in floorplan.

5.0.14 MACRO PLACEMENT
The placement of macro also affects the timing very effectively. Shows a poor
macro placement. It can be see there are two macros in the design. Macro1 is
sitting very far from the ports it is talking to whereas, macro2 is sitting close to
the ports it is talking to. So, the timing of the paths from macro2 to the ports
will be good. The routing will happen to macro1 as shown in the figure. In
order to optimize those paths, the macro1 should be moved close to the ports
it is talking. This is done by using move-objects command or by manually
moving the macro in the layout window. After moving the macro, the new
macro placement information is dumped out and is used for future runs. The
optimized macro placement is shown in the figure below-
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Figure 5.0.12: Macro Placement before Optimization

Figure 5.0.13: Macro Placement after Optimization
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5.0.15 IO PORT OPTIMIZATION

As a part of the layout information, in addition to boundary of the design the
placement information of the IO ports will also be given. They also should be
placed on the boundary of the design. These ports act as the gateway between
external world and the components inside the chip. Aligning the ports along
with the pins of macros or cells will reduce the routing the distance, improve
the timing and helps the neighbouring partitions. In figure 5.4, it can be seen
that the IO ports are randomly placed with respect to the pins of macro. This
will affect the timing of the design very much. For the optimization, firstly the
pins that are connected to the ports must be identified. This is done by using
all-connected command. This is done in the floorplan stage so that the pin infor-
mation is obtained easily. get-ports command is used to get all the ports. Then,
the location of the pins is identified by getting the bounding-box information of
the pins using bbox attribute of the pins in get-attribute command. After this,
the ports are moved to the exact location of the pins. From there the ports are
moved to the boundary by giving the specific delta value. The delta value is the
difference between designs X or Y and macros X or Y.

Figure 5.0.14: IO Port Placement before Optimization

Figure 5.0.15: IO Port Placement after Optimization

5.0.16 TIMING OPTIMIZATION IN PLACEMENT

Irregular placement of the cells and sequential elements can also affect the tim-
ing of the design. Floorplanning gives the location information of the compo-
nents in the design. During placement process only the components are placed
physically in the location allotted for them.
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5.0.17 BOUND CREATION
Above figure shows the design in which some of the cells are scattered at the
bottom of the block. The dotted line represents a bus, which is a group of con-
nections that travel from one point to another point. Since this bus is travelling
for long distance, it is considered to have bad timing QoR. This can be fixed
by placing the cells closer together. This is achieved by creation of bounds.
create-bound command is used for creating the bounds at a particular region.
After that, the cells are confined within that bound area. The small rectangle
specified with dotted lines in figure. is the bound that has been created. All the
cells that were at the bottom are now confined in that area thereby improving
the timing QoR by reducing the distance travelled by the bus.

Figure 5.0.16: Timing after Placement Optimization

Figure 5.0.17: Cells Placement before Bound Creation

5.0.18 TIMING OPTIMIZATION IN CTS
There are several ways to build an efficient clock tree in the design. Global
drivers are the cells that act as clock source. They are placed all over the design
as per the requirement. Clock is obtained from them and are evenly distributed
to all the sequential elements. The main aim of CTS is to minimize the latency
and skew. In figure , the blue coloured block is the global driver and the two
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Figure 5.0.18: Cells Placement after Bound Creation

small rectangles are sequential elements. It can be seen that the flip flop at
the top will receive the clock signal faster than the flip flop at the bottom. This
creates skew issue in the design. To fix it, the tool will add buffers in the shortest
path to match the skew value between two flip flops. This is done automatically
by the tool. But the path has to be mentioned to the tool.
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Figure 5.0.19: CTS with Bad Skew

Figure 5.0.20: Timing QoR after CTS Optimization
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Chapter 6

CONCLUSION

Various methods for achieving the timing closure of the design were discussed.
Timing optimization in both the pre-signoff and signoff stage is important. Usu-
ally the design will be in the post ICC/signoff stage for long time because this
stage is responsible for the signoff and closure. Once the signoff team signals,
then only the design will be moved in for tape out (fabrication). That is the
reason why timing team is more important in the entire design flow. Timing
closure basically involves analyzing loads of data and deriving a solution form
that analysis. From the analysis, it can be seen that hold violation is more criti-
cal than the setup violation as it doesnt depend on the timing period. The hold
violation occurs only after the clock tree is built. Before the clock tree is built
all the clocks will be ideal, that is the latency and skew will be zero. Hence
before CTS the setup violations are fixed. The clock pulling and pushing tech-
niques were not implemented in this project, which are to be explored in the
future. Also various techniques for optimizing the timing in the pre-signoff
stage were discussed. This pre-signoff stage optimization plays a vital role in
timing closure because most of the timing issues are solved in that stage it-
self. There is no pre-defined set of techniques in pre-signoff stage as in signoff
stage to fix the timing issues. The techniques that are used are partition spe-
cific. There can be designs where IO port optimization is not possible at all.
Only the shielding technique of crosstalk fixing was discussed. There are other
techniques for fixing the crosstalk noise, which can be studied and explored in
the future. The other design constraints, power and area should be considered
and checked throughout the optimization process. Generally those factors will
also be analyzed and optimized in parallel. With increasing technology more
violations will occur in the future designs and complexity to fix the timing issue
will also increase. But STA will hold good for analyzing the design and fixing
the violations.
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