
Optimization of a Component IP

within an Infrastructure Subsystem

Major Project Report

Submitted in fulfillment of the Requirement for the

the Degree

of

Master of Technology

in

Electronics & Communication Engineering

(VLSI Design)

by

Ronita Mitra

(17MECV10)

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382481

May 2019

Optimization of a Component IP

within an Infrastructure Subsystem

Major Project Report

Submitted in fulfillment of the Requirement for the

the Degree

of

Master of Technology

in

Electronics & Communication Engineering

(VLSI Design)

by

Ronita Mitra

(17MECV10)

Under the guidance of

Mr.Prodip Kumar Kundu Dr.Vaishali Dhare
Staff Verification Engineer, Asst.Professor in EC Department,
Arm Embedded Technologies Pvt. Ltd, Nirma University,
Bangalore,Karnataka. Ahmedabad, Gujarat.

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382481

May 2019

I dedicate my thesis to my friends and family.

i

DECLARATION

This is to certify that

1. The thesis comprises of my original work towards the degree of Master

of Technology in VLSI Design at Institute of Technology, Nirma University

and has not been submitted elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material

used.

-Ronita Mitra

17MECV10

ii

CERTIFICATE

This is to certify that this project entitled Optimization Of Component

IP within Infrastructure Subsystem submitted by Ms. Ronita Mitra

(17MECV10),towards the fulfillment of the requirements for the degree of

Master Of Technology in VLSI Design, Nirma University, Ahmedabad at is the

record of work carried out by her under our supervision and guidance. In our

opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this major project, to the best of

our knowledge, haven’t been submitted to any other university or institution

for award of any degree or diploma.

Place: Ahmedabad

Date :

Dr. Vaishali Dhare Dr. N.M.Devashrayee

Guide and Asst.Professor, Coordinator-VLSI Design,

Nirma University,Ahmedabad Nirma University,Ahmedabad

Dr. D.K Kothari Dr. Alka Mahajan

Professor & Head , Director,

Institute of Technology, Institute of Technology,

Nirma University,Ahmedabad Nirma University,Ahmedabad

iii

CERTIFICATE

This is to certify that the Project entitled Optimization of Component IP

within an Infrastructure Subsystem submitted by Ms. Ronita Mitra

(17MECV10), towards the submission of the Project for requirements for the

degree of Master of Technology in VLSI Design, Nirma University,Ahmedabad

is the record of work carried out by him under our supervision and guidance.

In our opinion, the submitted work has reached a level required for being

accepted for examination.

Place: Banagalore

Date :

Mr.Prodip Kumar Kundu

External Guide,

Staff Verification Engineer,

Arm Embedded Techology Pvt. Ltd.,

Bangalore

iv

ACKNOWLEDGEMENTS

With immense pleasure, I would like to present the report on the work Op-

timization of Component IP of an Infrastructure Subsystem. I am

very thankful to all those who helped for the successful completion of the

project work and for providing valuable guidance and knowledge throughout.

I express my gratitude and sincere thanks to Dr. Vaishali Dhare, my internal

guide of M.Tech VLSI Design and Dr.Niranjan M Devashrayee, PG Coordi-

nator of M.Tech VLSI Design for guidelines and mentoring during the review

process. I take this opportunity to express my profound gratitude and deep re-

gards to Dr. Vaishali Dhare, guide of my internship project for her exemplary

guidance, monitoring and constant encouragement.I would also like to thank

Mr. Prodip Kumar Kundu and Mr. Khushal Gelda, external guide of my

internship project from Arm Embedded Technologies Pvt. Ltd., for guidance,

monitoring and encouragement and pushing forwards for the project.

-Ronita Mitra

17MECV10

v

ABSTRACT

Arm being a Semiconductor IP company, is a pioneer in market for providing

IPs which are used in numerous field of SoCs such as arm based processors in

automobiles, IoTs,servers, mobiles and lately in machine learning chips as well.

Functional validation for these IPs is one of the challenging task in today’s

scenario as the heterogeneous complexity of SoC design has increased consid-

erably.But, before delivering these IPs to numerous Arm Partners,verification

of these ARM IPs focuses on extensively validating the inter working of multi-

ple ARM IPs in a wide variety of practical kind of systems with wide range of

configurability and scalablity which in arm environment is abbreviated Kits.

With robust verification methodology of IP under the SoC environment helps

us to detect bugs at an early stage of design cycle which can detect more

bugs comparatively to only functionally verifying IP alone.Main challenge ly-

ing here is integrating various IP components within the System, is to achieve

a target system performance with minimum resource allocation.So the main

objective underneath is to understand the functionality of each module of base

element(IP) of infrastructure SoC environment and knock out the additional

logic’s and modules used as well migration the STM(System Trace Macrocell)

from base element to the dedicated Debug IP and thus achieving faster per-

formance,lower gate counts,LUT’s and validate it in a designed dedicated test

suite environment. Being a part of Kits team as well as Memory modelling

team, this dissertation also includes project work from memory modelling team

where the primary objective was to write a generic test bench for the mem-

ory compiler validation suite to achieve the maximum functional coverage for

testing each pins of sram memories. All the simulation and as well as the

emulation results are included in this thesis.

vi

Contents

Acknowledgements v

Abstract vi

List of Figures xi

Abbreviations xi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Approach . 4

1.4 Scope of Work . 4

2 Literature Survey 5

2.1 Overview . 5

2.2 Server Based SoC Architecture 7

2.3 Memory maps . 10

2.4 Interrupt Controller . 12

2.5 I/O Virtualization . 12

3 The Base Component 13

3.1 Architecture definition . 13

3.2 Functionality of each module 14

3.2.1 Reset Generators . 14

vii

3.2.2 Peripheral Interrupts 15

3.2.3 On-Chip Memories . 15

3.2.4 Watchdog Timers . 16

3.2.5 Generic Timer Control 17

3.2.6 UART . 17

3.2.7 System Trace Macrocell 19

3.2.8 Access Control gates 19

3.2.9 Clock gating and power gating interface 19

3.3 Optimization Methodology . 20

4 Network Interconnect 22

4.1 Overview . 22

4.1.1 Master interfaces . 23

4.1.2 Slave interfaces . 24

4.1.3 Protocol Conversion 24

4.2 Using ARM AMBADesigner 25

5 CoreSight on-chip Trace & Debug 28

5.1 About Coresight Component 30

5.2 Coresight Components . 31

5.2.1 Debug Access . 32

5.2.2 Cross triggering . 34

5.2.3 Trace . 35

5.2.4 Buses . 37

5.3 CoreSight System Trace Macrocell 38

5.3.1 Interfaces . 39

6 Functional Validation of Memory Compilers 42

6.1 Summary for the Work done 42

6.1.1 Memory compilers overview 42

viii

6.1.2 Work done . 44

7 Conclusion 46

7.1 Results And Snapshots . 46

7.2 Conclusion . 47

References 48

ix

List of Figures

1.1 Multilayered approach to system validation 3

2.1 Basic Infra Subsystem . 6

2.2 System Integration . 7

2.3 Generic Infrastructure Subsystem 9

2.4 Top level Application memory map 11

3.1 Top level Base hierarchy . 14

3.2 Reset generator . 15

3.3 Watchdog timer . 17

3.4 UART functional block . 18

4.1 NIC functional block . 23

4.2 Part1:Design flow of Arm ambadesigner 26

4.3 Part1:Design flow of Arm ambadesigner 27

5.1 Single processor with Debug APB access 29

5.2 Single source trace with the TPIU 29

5.3 Coresight System Components 32

5.4 DAP Connections inside an SoC 33

5.5 Cross triggering . 34

5.6 Example system with trace components 36

5.7 STM integrated into a typical system. 39

6.1 Memory array arrangement 43

x

6.2 Memory banking and multiplexing 43

6.3 Memory banking and multiplexing 44

7.1 Data metric count for the optimization 46

xi

ABBREVIATIONS

ARM Acorn Risc Machine

SoC System on Chip

SIF System Integration Framework

AXI Advanced Extensible Interface

AHB Advanced High Performance Bus

APB Advanced Peripheral Bus

AMBA Advanced Micro-controller Bus Architecture

NIC Network Interconnect

QoS Quality of Service

QVN Quality Virtual Network

DAP Debug Access Port

TPIU Trace Port Interface Unit

JTAG Joint Test Action Group

xii

Chapter 1

Introduction

1.1 Motivation

For an complete bug free SoC design like mobile,infra or automobiles SoC,

verification is considered to be of prime importance. Most amount of time

in design cycle is spent in functionally verifying the SoC design after inte-

grating many IPs together as a complete system and these verification cycle

consumes of about 60 to 70 percent of SoC design cycle. Even after so many

stages of verification of these IPs, as the complexity in SoC integration in-

creases the verification becomes more complex .Even after so much of efforts

in validation of these IPs, as SoC technology is becoming more and more in-

triguing by integrating so many components into one which have elements like

memory controllers, display controllers, interconnects, memory management

units(MMU),interrupt controllers and other peripherals are embedded as well.

The IPs individually are complicated units of design which can be validated

personally but no matter how much of rigorous IP-degree verification, it isn’t

feasible to stumble on all bugs which are particularly those which are sensi-

tized simplest when the IPs engage within a device IP. The objective of the

verification team is to offer all arm partners with remarkable IP which have

been established to internally perform efficiently and bug free.Thus delivering

1

the efficient IPs to all the partners and thus reducing the time to market cycle.

So in order to ensure that IP functionality remains the same as per the

specification and design in a regular and reproducible way is the important

thing intention of verifying these IPs, and also it is to be robustly verified

keeping that in mind in the SoC environment. Thus, the focal point of ver-

ification is IP but in a any configurable SoC environment so arm tests this

IPs under these scenarios of SoC with different system configuration which

is called System or SoC integration. A package of SoC can described as a

so many IPs included together for a selected target application segment (e.g.

cell, IoT, Infrastructure and so on.).ARM generally consists of the complete

variety of IPs such as CPUs, GPUs, display controllers,interconnects, memory

controller, device controller, interrupt controller, debug and trace, other me-

dia components. A complete package of SoC is partitioned down into smaller

components known as elements that are considered as basic building blocks for

system integration. Thus Arm SoC framework contains as a minimum of one

primary IP and white area logic around it. This Subsystems are made which

is considered to be representation of ordinary SoCs with specific packages and

applications.This integration results gives us the idea and a complete idea of

the demanding situations seen by the surroundings of integrating diverse IP

components to gain a goal gadget performance. [1]

2

Figure 1.1: Multilayered approach to system validation

Thus as a part of kits team one need to ensure the integration of system

aka kits using ARM IPs are integrated under one framework and validating

that kits to ensure the testing done on these configurable kits by the system

validation is to done successfully.

1.2 Problem Statement

To make sure that the SoC architecture of an infrastructure Subsystem .i.e. for

server based system on-chip environment for Arm based IP’s have re-usability,

scalability and configurability.In order to ensure that arm has a dedicated

automation framework known as SIF(System Integration Framework) which

integrates the components of SoC with each dedicated IP and white space

logic around it and verify it thoroughly on simulation and emulation platforms.

Each components or generic common IPs needed around arm IPs have to be

configurable and is distributed in terms of hierarchical manner which should

acquire minimum resource allocation and completely optimized.Question arises

that whether all the components used around ARM IPs are in most optimized

form or any additional redundant logic’s are present?

3

1.3 Approach

While gin through with the understanding of all the components around ARM

IPs like for example arm processors one of the target components was base IP

which was to be optimized.Since the kits build are broken down in an hier-

archical manner with top down approach of hierarchical ways all the generic

components like timers , watchdogs , interrupts , on chip RAM’s and few

are modules are integrated under one higher level of abstraction as a com-

plete component or IP which is to be described as base component which is

pre-rendered during the system build.

1.4 Scope of Work

Once the optimization of the base component is done and modifications on

the RTL to be implemented,the validation is done on this component using

dedicated testcases and regression to be done on simulation and emulations

tools to ensure that the systems is working fine with the changes done . On an

overall basis an achievement would to be reduce the extra resource allocated

to this components which can reduce an overall area, power consumption and

time as well as increase in speed.

4

Chapter 2

Literature Survey

2.1 Overview

Arm is a semiconductor company and ARMs IPs are used in a various range

of SoCs,with the assurance that the era does exactly what it is designed to do

in a constant form and be completely bug free thus ensuring configurability,

resuabilty and scalabilty.The focus of verification lies particularly these ARM

IPs, however in a totally sensible SoC environment in which these IPs [1] with

unique configurations are known as Kits for complete SoC flow in order to

find more bugs.

The system validation in ARM makes use of variety of stimulus and to take a

look at methodology one need to take a look at kits. These test case stimuli is

in general software tests which run on CPUs within the device.The tests case

written are usually in high-level language i.e. C language or assembly level

and the generated test cases make use of the Random Instruction Sequence -

RIS equipment so that it will be defined in the imminent sections. In addition

to code going for walks on CPUs, a set of Verification IPs (VIPs) are used to

to be into the system machine or to behave as observers.

In guidance for validation, a test plan is created for each IP within the

5

package. Test making plans captures various IP configurations, features to be

tested, eventualities with a purpose to be protected, stimulus, inter operations

consideration with IPs, verification metrics, tracking mechanisms, and diverse

flows with a purpose to be part of verification. Testing of kits begins with

a simple stimulus this is step by step ramped up to extra complicated stress

instances. The system validation crew at ARM has mounted a repeatable and

automated package improvement float, which lets in us to build a couple of

kits for distinct segments. The mix of IPs, their internal configuration, and

the topology of the system are selected to reflect the extensive range of end

uses. The kits are tested on two number one targets emulation and FPGA. [1]

• five-6 trillion emulator cycles.

• 2-3 peta FPGA cycles of Kits validation.

A traditional Infrastructure is subdivided into elements, as shown inside the

diagram.

Figure 2.1: Basic Infra Subsystem

Each kit is a set configuration of elements connected together in a described

topology.To deal with the automation requirements of the general Kit work-

flow; integration is carried out the usage of System Integration Framework

(SIF). The system takes in elements with top-stage integration information as

6

enter to generate the Kit pinnacle-level Verilog and related documents required

for compilation. The figure underneath describes the general float.

Figure 2.2: System Integration

Newer IPs are absorbed into their respective element class, e.G. CPU detail

is greater to guide ultra-modern cores, at the IP Alpha milestone. The new

element versions are then integrated into a defined kit.

Kits are categorised into two broad marketplace segments which are cellular

and infrastructure. Each segment is further bifurcated as - high-end, extent,

wearable (in cellular) and optimized infrastructure, mid-variety infrastructure,

and high-end infrastructure(server).

2.2 Server Based SoC Architecture

The ARM structure profiles, Application, Real-time, and Microcontroller(ARM),

exist in element to segment that explain the traits of specific target markets.

7

The variations among merchandise targeted at extraordinary profiles are mas-

sive due to the various practical necessities of the marketplace segments. This

phase specifies a hardware machine structure, based totally on ARM 64 bit

architecture, which server machine software program, such as running systems,

hypervisors and firmware can rely on. It addresses system capabilities and key

elements of the device architecture. The main intention is to make sure suffi-

cient standard device architecture to allow a definitely-constructed single OS

image to run on all hardware compliant. The ARM architecture has basically

three profiles which are as follows i.e A for Application,R for Real-time, and

M for Microcontrollers, exist in element to section the solutions produced to

explain the traits of particular goal markets.

Infrastructure system supports configurable numbers of cores and clusters.Most

elements contain clock,reset and power control logic.An ARM based intercon-

nect which connects all the components together to interact with each other.All

the processors targeted for specific functionality are bifurcated as Application

processors(APP), System control Processors(SCP) and Manageability control

Processors(MCP). System includes Memory controllers,generic interrupt con-

trollers, clock generators and on chip memories and Arm CoreSight technolo-

gies.The following elements have been defined based on the diagram shown

below: [2]

8

Figure 2.3: Generic Infrastructure Subsystem

• CPU Element : Contains High performance with ARM based CPU

Clusters.

• System Control Processors : This element consists of targeted CPUs

which are ARM micro controller based system control and manageability

control processors.

• Base Component : It includes mainly system periperals which are

generic timers, generic watchdogs,scratch ROMs and RAM’s.

• Interconnect Element : It consists of cache coherent mesh intercon-

nect and switches that provides master and slave extention interfaces.

9

• Memory Element : Consists of dynamic memory controllers which

implement CHI(Cache coherent mesh) datapaths to cache coherent in-

terconnect with clocks and reset logics.

• Clock generators Clock generation logic are used in the top level of

the design.

• Debug Element : This implements the coresight based sub-system

along with coresight technology.

• Voltage and Power Domains:A power domain is a collection of hard-

ware modules within a voltage domain that share common power control.

A voltage domain can have one or more power domains. A power gated

domain is a power domain whose power can be removed by on-chip power

switches.

2.3 Memory maps

The memory maps for the processors are arranged in the following manner

with application processors , system control processors and manageability con-

trol processors.The memory map in this and the following sections also shows

the overall security attributes associated to each area of memory which are

grouped as Always Secure Access which is component or region that is

only accessible to secure transactions. Any non-secure access targeting these

will result in a decoder response.and Non-Secure Access which is a compo-

nent or region that is accessible to both secure and non-secure transactions.

Figure 2.4 shows the memory map addressing.

10

map.png

Figure 2.4: Top level Application memory map

All Non-secure on-chip masters in a base server system that are expected

to be under the control of the operating system or hypervisor must be capable

of addressing all of the Non-secure address space. If the master goes through a

System Memory Management Unit(SMMU) then the master must be capable

of addressing all of the Non-secure address space when the SMMU is turned

off. [2]

11

2.4 Interrupt Controller

The Generic Interrupt Controller (GIC) structure defines the architectural re-

quirements for coping with all interrupt assets for any processor related to a

GIC and a not unusual interrupt controller programming interface applicable

to uniprocessor or multiprocessor structures. The GIC is a centralized re-

source for supporting and managing interrupts in a system that consists of as

a minimum one processor. Registers for managing interrupt assets, interrupt

the conduct, and the routing of interrupts to one or greater Components in

structure.

2.5 I/O Virtualization

Hardware support for I/O Virtualization is optional, but if required shall use

a System MMU compliant with the ARM System Memory Management Unit

(MMU) specification.Each function, or virtual function, that requires hardware

I/O virtualization is associated with a SMMU(System Memory management

Unit) context. The programming of this association is IMPLEMENTATION

DEFINED and is expected to be described by system firmware data. [2]

12

Chapter 3

The Base Component

3.1 Architecture definition

As per the discussion in the above sections, the components or IP within the

SoC are described in abstract way to ease the understanding of connectivity’s

in between the IPs.The base element or component is one of the internal IPs in

the system can be defined as an abstraction level including system peripherals,

watchdog timers, counters, scratch RAM’s and ROM’s along with the inter-

nal debug and trace elements known as System trace macrocell(STM) and

UART(Universal Asynchronous Transmitter and Receiver).The figure below

shows the hierarchical arrangement of the base component.

13

Figure 3.1: Top level Base hierarchy

3.2 Functionality of each module

Since base component comprises of many elements, each modules functional-

ity combined as a whole will describe the overall base component.After un-

derstanding each functionality ,description on how the base component is op-

timized will be covered under this chapter.Below subsection will define the

functionality of each modules within to give clear picture of optimization.

3.2.1 Reset Generators

The Base Element implements numerous different reset domain names. The

determine beneath suggests the distribution of resets within the element. The

cause of the reset domain is whenever the system powers down and want as

to boot up once more within a couple of clock area. All connections inside

the element no longer belonging to any reset area are assumed to be asyn-

chronous. In a a couple of clock domain design, an asynchronous reset ought

to be one by one synchronized for every clock domain as shown in parent

14

underneath. A design can also have a couple of asynchronous reset sources,

which includes external reset (in all likelihood cleaned up from glitches), inner

controls (e.g. Voltage area reputation indication) and PLL(Phase locked loop)

lock situations. All those together asynchronous indicators may be blended to

a unmarried Reset Enable condition, as proven in Figure The top-level system

reset SYSTROPRESETn is synchronized with each clock, and then buffered,

providing a synchronous reset for each clock domain.

Figure 3.2: Reset generator

Since every reset synchronizer incurs an additional non-deterministic syn-

chronization postpone, expressed in phrases of the targeted clock area cycles,

the exclusive clock domain names may additionally go away the reset state

at arbitrary exceptional instances. Considering the complexity of a couple of

clock domain names, multiple reset situations and a couple of inter-clock reset

dependencies, IP-based control of the reset circuitry is favored.

3.2.2 Peripheral Interrupts

Physical Interrupt Interface(PII) are the interface which consists of the inter-

rupts generated by the Generic Timers, and the Generic Watchdogs.

3.2.3 On-Chip Memories

On-Chip Memories that are Scratch ROM(Random On-chip Memories) and

Random Access Memory(RAM’s) which is used as a boot memories for appli-

cation processors core with memories with additional Memory BIST support

15

and different memory interfaces within.

3.2.4 Watchdog Timers

The Generic Watchdog consists of cold reset and a Warm reset.For a cold reset,

certain register values are reset to a known state.Watchdog Cold reset should

just happen as a component of the watchdog powers up.On a Warm reset, the

condition of the watchdog isn’t reset, yet other rationale that can be AHB or

APB.This is to understand that the system undergoes reset sequence whereas

the watchdog retain those states of the events and can be examined during

the system in operation.

Watchdog timers signals are connected to interrupts where the system can

undergo refresh states for proper watch period.And if these refresh occurs

successfully then system can undergo normal state whereas if refresh doesn’t

occurs during the watchdog refresh expiring then a signal generates There are

two kinds of refresh state occurs in watchdog timers.

• Timeout refresh occur when the watchdog is enabled and the input time

value is greater than the value of the Watchdog Count Value Register

(WCVR).

• Explicit refresh occur when one of the following registers is written with

Watchdog Offset Register (Control frame), Watchdog Control and Status

Register (Control frame) and Watchdog Refresh Register (Refresh frame)

The watchdog generates two interrupt outputs based on sequences of these

events.The implementation uses a state machine to track the sequence of

events, and the state of the state machine is decoded to generate interrupt

outputs.

16

Figure 3.3: Watchdog timer

3.2.5 Generic Timer Control

Timers control in any system is used to execute the scheduled task repeatedly

within the system.Also it has many other application such as capturing the

timestamp between two events Considering arm cores, there is a system gen-

erated clock timer for OS images, they uses periodic timer control to generate

interrupts and on each clock pulse and these timer increases and decreases

the counters.As soon as an interrupt is generated as per timer starts with the

counter .

3.2.6 UART

The UART is an Asynchronous Transmitter and Receiver slave module con-

nected within any System-on-Chip (SoC) peripheral with APB(Advanced Pe-

ripheral Bus) which is abstracted in the base component within the infra sys-

tem .The UART has inclusion of Infrared Data Association (IrDA) Serial In-

frared (SIR) protocol Encoder/Decoder.As UART performs serial-to-parallel

conversion on data received from a peripheral device and parallel-to-serial con-

17

version on data transmitted to the peripheral device.

Generic UART is designed to offer a basic facility for software bring up and

as such specifies the registers and behavior required for system software to use

the UART to receive and transmit data. This specification does not cover reg-

isters needed to configure the UART as these are considered hardware specific

and will be set up by hardware-specific software.

Figure 3.4: UART functional block

The CPU reads and writes statistics and manage/reputation records through

the AMBA APB interface. The UART includes a programmable baud charge

generator that generates a common transmit and acquire internal clock from

18

the UART internal reference clock enter UARTCLK. The UART can generate

personally-mask-able interrupts from the receive (such as timeout), transmit,

modem fame and errors conditions in a single combined interrupt in order

that the output is asserted if any of the individual interrupts are asserted and

unmasked DMA request alerts for interfacing with a Direct Memory Access

(DMA) Controller. [2]

3.2.7 System Trace Macrocell

System trace macrocell is an internal debug and trace module within an arm

subsystem which is a part of core sight technology.More details on Coresight

technology and functionality of STM is described in chapter 5.

3.2.8 Access Control gates

Access control gates is a mechanism to manipulate the passage of unique chan-

nels. It blocks get right of entry to when the get right of entry to manage gate

is closed.AXI3 protocol is not supported however if used there’s a predicament

that the memory needs to now not go back B channel responses before receiv-

ing both AW and W channel requests.There are two LPI Q-channels applied

for every ACG.

3.2.9 Clock gating and power gating interface

There are two Low power interface applied for each modules

• Power Q-Channel :This allows conversation between the ACG and

the electricity controller. It uses its PWR QACTIVE sign to suggest the

requirement for the gate to be opened or closed. Its handshake protocol

lets in the strength controller to carry out manage sequences at the gate.

•]Clock Q-Channel:This enables communique between the ACG and a

19

clock controller. It uses its clock q channel active sign to signify when

the clock is needed.

• ACG counts splendid transactions and responses at the ACE or AXI4

channels it sits on. It ensures tremendous transactions are completed

before declaring power and clock qchannel active and accepting any Q-

Channel quiescent requests

3.3 Optimization Methodology

All the components in an SoC has a support of low power modes i.e with

clock and power gating support .Considering only base element with complete

understanding of each modules within the base element which has a support

for power and clock gating within the modules.Since the base element stays

in an always on mode the need for access control gates which acts as a switch

between network interconnect(NIC) and on chip rams for low power mode is

an redundant module within an system which occupies extra modules and in-

terconnects for AXI4 to AXI3 modules. [3] Thus it is much needed to optimize

that part in the base element. Also the clock gating signals which goes into

the modules of interconnect and access control gates need to be optimized.

In the entire hierarchical approach of the base element design knocking out

these modules from the entire system results in an optimized IP with reduced

gate counts, LUT’s and registers.This method of knocking off the elements

from the entire hierarchy is to be defined as flattening of the component IP.

In this methodology flow the NIC interconnect is re-rendered again with set of

new AXI3 ports and the Access control gates modules are knocked out from the

modules and RTL of base component. This new re-rendered component are

stitched together with the other ARM IPs in the System Integration automa-

tion Framework which automatically connects all the components together.

Since the changes to be done in the base component and then whether its

20

affecting the other components or not. This the system in form of kits is to be

tested on the validation suite automation framework and with the regression

of the various tests one can conclude that the functionality of the system is

working okay and the test passes every time.With the support of emulation

from various vendors within arm environment we can verify the design on dif-

ferent emulators which gives us gate counts , optimization in terms of power

,area and speed.

21

Chapter 4

Network Interconnect

4.1 Overview

The network interconnect is a library of interconnection with more than one

masters and slave interfaces and additionally exceedingly configurable and

multi-electricity area tools.The Network Interconnect is a package of key in-

terconnect IP that allows you to build a scalable and configurable network

interconnect.One can integrate the NIC with AMBA Domain bridges or thin

Links bridges into a single interconnect. The NIC additionally includes: Low

Power Distributor. CoreLink AXI4 to AHB(Advanced High-Performance

bus)Bridge. Network Interconnect Advanced Quality of Service. Advanced

Quality of Service for Virtual Networks. One can utilize the high level of

configurability of NIC for optimization and tuning. The blessings of using

the NIC-450 are: Unified low-power interfaces while applicable. Single de-

sign environment to configure IP blocks and connect them collectively. Using

the NIC with CoreLink internal tool Creator employs algorithms to aid the

introduction of valid configurations that are based on one’s specific layout ne-

cessities.

NIC interconnect consists of multiple switches with support of AMBA master

and slave interface blocks.It supports up-to one to 128 master and slave inter-

22

faces with hierarchical clock gating support within. The NIC has a support for

QoS i.e Quality of Service programmable facilities as well as have support for

QVN (Quality Virtual Network) extension which provides a way which avoids

blocking of overhead path and cross-path blocking between different data flows

and one uses this QVN to allocate the register space to virtual channels within

the interconnect in the SoC. [4]

Figure 4.1: NIC functional block

4.1.1 Master interfaces

The NIC can have following types of protocols from the AMBA variants which

are AXI ,ACE ,APB, AHB master interfaces.It has many configurable options

while designing them in AMBA Designer which are address width, data width,

the types of timing closures, think links , user sideband signals and upsizer-

23

downsizer widths.It also have the options of security with trustzones like secure

access where one can only have secure transactions for accessing the compo-

nents, non-secure access where both secure and non secure can have access

for the transactions and boot Security access where the software determines

which is to be permissible for accessing the components.

This NIC also has a support for clock and power gating as a low power inter-

faces which is a C channel in AXI domain with hierarchical clock feature.

4.1.2 Slave interfaces

The NIC supports many kind of ARM variant AMBA Protocols like AXI,AHB,APB,AHB

protocols which depends upon the version of the NIC used by the user.It also

has configurable ports such as address width, data width, data upsizers, down-

sizers, read and write acceptability, synchronous and asynchronous frequency

options, timing closures options, thin links, security options like Secure and

Non Secure per access for accessing the components.

4.1.3 Protocol Conversion

One the main advantage for using NIC interconnect is that different com-

ponents works on or supports different kinds of AXI or ACE Protocols from

AMBA series of protocols by ARM.So for these components with different pro-

tocols to communicate with each other, the conversion is necessary and NIC

does that . Considering an example of AXI3 to AXI4 or AXI4 to AXI3 protocol

conversion the where AXI4 will have more number of transactions, bifurcation

of long bursts is done into small AXI bursts and the output transaction can

be determined as a ratio of total incoming bytes for the input transaction to

the total number of bytes for the output beat.

24

4.2 Using ARM AMBADesigner

AMBA Designer is a configuration tool using which NIC switches can be de-

signed using a GUI mode that generates a specific implementation of a Core-

Link NIC-400 Network Interconnect. AMBA Designer drives the Interconnect

generation engine to provide the following for a set of configuration parameters

after the design is complete which are:

• Verilog Register Transfer Level (RTL)

• testbench and stimulus

• synthesis scripts.

AMBA Designer supports the following design tasks:

• Configuring CoreLink and CoreSight devices.

• Generating RTL for the configured devices.

• Optimizing the AMBA interconnects.

• Stitching together interconnects and CoreLink or CoreSight components

into an AMBA-compliant system with IP-XACT stitching.

• Optimizing the AMBA interconnects.

AMBA Designer generates different kind of configurations that are compatible

on all platforms and generate the RTL Verilog files and the associated Out Of

Box (OOB) test benches for verifying the RTL. In the AMBA Designer has

configurable IP components and one can use them to create systems using a

graphical representation that shows the components, their ports, and the con-

nections between ports.One can also use AMBA Designer from the command

line in batch mode. For downloading one must have all the required libraries

of IP bundles installed. All the specification of which protocols supports are

25

there for which component of NIC is given from the option of which module

to design as per the versions. The workflow for the amba designer is give in

below figure .Ambadesigner has following design flow for creating the different

sytems keeping mind the re rendering of NIC which is highly configurable using

this tool version.All the peripherals and interconnects od SoC used are confi-

grable in larger extent. Figure below describe the complete flow of Arm amba

designer using which NIC module was re-rendered in our design optimization

with genrated RTL and testbench around the system.

Figure 4.2: Part1:Design flow of Arm ambadesigner

26

Figure 4.3: Part1:Design flow of Arm ambadesigner

27

Chapter 5

CoreSight on-chip Trace &

Debug

Arm CoreSight technology is primarily an ARM-based IP which is used to

debug and trace software that runs on Arm-based SoCs.Debugging functions

are used to take a look at or adjust the states of parts of the design whereas

trace features permit for non-stop series of device information for later off-

line analysis.With Core Sight, each are used together at all stages of design

flow.The systems included in this chapter demonstrates the most basic config-

urations of a CoreSight system. More complex systems might involve clusters

of processors, multiple clock-domains etc. [5]

• Debug functions mainly used to read the states of the components

under operation or during the booting options.It can also change the

value stored in registers of the components. Mainly the debug has a

feature to collect the values of registers and monitors it as well as can

change the values during booting issues.

28

Figure 5.1: Single processor with Debug APB access

• Trace functions will collect the values of the states or monitor the

states during the system is the non working state analysis.Execution

trace generation macrocells exists within systems, with dedicated soft-

ware and some peripherals for trace generation and monitoring trace

streams. [6]

Figure 5.2: Single source trace with the TPIU

29

5.1 About Coresight Component

Earlier before the coresight technology, the listed methods were considered for

debugging: [6]

1) JTAG as an debug element which acquired hard coded pins that is invasive

debug with core halted the usage of:

-Breakpoints and watchpoints are two things which used to stop the activity

withing processor for some amount of time ony on a particular activity.

-A dedicated pins were used to look at and regulate registers and memory and

provide unmarried-step execution.

2) Conventional self-hosted debug reveal that is invasive debug with the pro-

cessor running the use of a debug monitor that is living in memory.

3) Trace is non-invasive debug with the processor walking at complete velocity

using:

- A series of facts on practice execution and information transfers.

-Delivery off-chip in real-time, or capture in on-chip memory.

For committed IPs of CoreSight Technology, a multicore debug and trace an-

swer has the subsequent advantages over the traditional approach:

• debug and trace visibility of whole systems

• pass triggering support between SoC subsystems

• higher facts compression than previous answers

• multi-source hint in a single stream

• trendy Programmers Models for standard device assist

• open interfaces for third-party cores

• low silicon overhead.

CoreSight Technology will increase the debug task in one-of-a-kind trends of

SoC design: [5]

30

• Systems are tracing extra facts per sec and should transfer this out of

the SoC so that pin interface frequencies are not rising as fast as on-chip

frequencies.

• System logic is sufficiently decoupled from core execution to require di-

rect visibility.

• Clock and energy domain implementations are complicated.

5.2 Coresight Components

This segment describes a number of the fundamental capabilities of CoreSight

Technology that enable us to deal with the troubles and demanding situations

of debugging complicated SoCs.This section also describes the individual com-

ponents that make up CoreSight systems and it’s overview.

Figure 5.1 shows a system containing CoreSight components.

31

Figure 5.3: Coresight System Components

5.2.1 Debug Access

The debug access in CoreSight systems use of the Debug Access Port (DAP)

which offers real-time access of memory without halting the core also debug

control to all status registers. This is quicker than the conventional JTAG

mechanism that makes use of the processor core to write data to memory

when the debugger does not support this approach.The figure below suggests

an example device with debug components and a DAP in SoC design.

32

access port.PNG

Figure 5.4: DAP Connections inside an SoC

The DAP offers the following advantage for multi-core SoC designs:

• Since the component with no low power support or an always on element

has no effect on the access of debug to different components, minimum

power authorities affects low on debug.

• The rate of accessing components is not affected by other IPs of SoC

and one can have direct access to each individual devices.

• More than one core can control debug capability, in place of not allowing

this to the core being debugged.

• A choice of physical debug interfaces is present as JTAG is not the single

choice for a device because of other lower-value interfaces are viable.

• The device does no longer ought to support a totally asynchronous clock,

TCK, due to the fact the DAP manages the clock. Debug clock syn-

chronization is a problem for synthesized cores due to the fact it’s far

33

simpler to preserve the frequency of clock properly underneath the pro-

cessor clock, or use a handshaking clock signal and also does not require

a go back TCK, RTCK, off-chip due to the fact synchronization is ac-

complished inside the DAP.

• One makes good sized financial savings in gate vicinity by using not

having to implement a TAP controller and associated clock domain syn-

chronization circuitry for each new debug detail inside the SoC.

• One add more manage over software get admission to to the debug reg-

ister file among the middle and the debug bus.

• With complete backward compatibility, we can serially daisy-chain JTAG

test chains with the DAP to offer access to them.

5.2.2 Cross triggering

The Embedded Cross Trigger (ECT), comprising of the Cross Trigger Inter-

face (CTI) and Cross Trigger Matrix(CTM), provides a preferred interconnect

mechanism to bypass debug or profiling activities across the SoC.

Figure 5.5: Cross triggering

The ECT presenting along with a very known method to attach distinctive

signal types. Distinctive layouts of popular triggers for cores and Embed-

ded Trace Macrocells(ETMs) are predefined and one can upload triggers for

34

third-party cores.The ECT permits tool developers to deliver a preferred man-

age conversation so that software program programmers can connect trigger

activities.

5.2.3 Trace

CoreSight Technology presents additives that support a standard infrastruc-

ture for the capture and transmission of hint data, a mixture of multiple

records streams by way of funneling together, and then output of facts to a

hint port, or storage in an on-chip buffer. Figure 5.4 suggests some CoreSight

components.

35

Figure 5.6: Example system with trace components

CoreSight Technology permits:

• simultaneous hint of asynchronous cores, busses, and wise peripherals

• debug and hint of an AMBA2AHB bus.

• tracing of instrumented bus masters.

• the output of trace data to the Trace Port which can run at an unbiased

frequency to on-chip busses ,an embedded trace buffer for on-chip garage

of hint facts in committed RAM or machine RAM, the DAP (Debug

36

Access Port) for low-call for trace solutions in pin count constrained

objectives.

5.2.4 Buses

The CoreSight structures use the subsequent bus protocols to attach compo-

nents collectively, and to allow integration in an SoC:

• AMBA Trace Bus (ATB):The ATB transfers trace data through the

CoreSight infrastructure in an SoC. Trace assets are ATB masters, and

sinks are ATB slaves. Link additives offer both master and slave in-

terfaces. The ATB transfers trace information thru the CoreSight in-

frastructure in a SoC. Trace assets areATB masters and sinks are ATB

slaves. Link components offer each master and slave interfaces.

The ATB protocol helps stalling of hint assets to enable the CoreSight

components to funnel and integrate sources into single trace flow, an

association of trace data which can generate source using source Trace

ID. Also, a CoreSight device can trace as much as 111 special items at

any one time. A flushing mechanism is gift to pressure historic trace

to drain from any assets, hyperlinks or sinks up to the point that the

request became initiated.

• AMBA3 Advanced Peripheral Bus (AMBA3 APB):CoreSight

supports the AMBA 3 APB protocol to allow transfer extension using

wait states. The Debug APB bus makes use of the AMBA 3 APB pro-

tocol within a CoreSight machine. The Debug APB is a bus dedicated

to the relationship of debugging and hint components in a CoreSight-

compliant SoC. All CoreSight additives are configured and accessed over

this bus via the APB-Mux in the DAP.

• Advanced High-performance Bus (AHB): CoreSight helps get ad-

mission to to a gadget bus infrastructure using the AHB Access Port

37

(AHB-AP)in the DAP. The AHB-AP provides an AHB grasp port for

direct get admission to to machine memory. CoreSight additionally sup-

ports AHB bus tracing using an AHB Trace Macrocell (HTM) that pro-

vides non-invasive debug visibility to any bus transactions on AHB con-

nections.

• AMBA Advanced eXtensible Interface (AXI): CoreSight supports

the usage of AXI within the system interconnect. Direct get entry to

to the AXI system can be supplied thru a Cortex center as an AXI bus

grasp, or through the usage of an AHB to AXI bridge at the AHB Access

Port within the DAP. CoreSight additionally supports hint technology

from bus masters at the AXI via the use of the STM that converts

stimulus writes to the device into a trace statistics flow.

5.3 CoreSight System Trace Macrocell

The STM abbreviated as System Trace Macrocell, which is typically a trace

source that is incorporated into a CoreSight framework, structured principally

for high transmission capacity trace of instrumentation implanted into pro-

gramming. This instrumentation is comprised of memory-mapped writes into

the STM Advanced extensible Interface (AXI) slave, which convey data about

the behavior of system.The STM incorporated in the base component design

is shifted to the Coresight component which has a support of this macrocell

within in the top level architecture hierarchy of Coresight in infrastructure

subsystem.The basic STM intergrated into base system is shown below,

38

Figure 5.7: STM integrated into a typical system.

The STM AXI slave is connected to a system interconnect which enables

all system masters,such as processors and DMA controllers, to generate trace

by writing to the STM stimulus ports.For interaction with DMA controllers,

the STM provides a DMA request interface compatible with the AMBA DMA

Controller. [7]For configuration purposes, the STM is connected to Debug APB

so that it can be accessed by off-chip and on-chip debug agents.CoreSight

authentication signals are used to control debug permissions.The STM trace

stream is output through the ATB interface and integrated with the rest of

the CoreSight trace infrastructure. [7]

5.3.1 Interfaces

The interfaces of the STM which are to be connected with the top level of

Coresight System hierarchy are listed below:

AXI Slave This interface connects the STM to the system bus.This design

39

provides a 32-bit AXI slave.

bfHardware event observation interfaceHardware events on this interface are

captured and trace is generated based on captured events.This interface con-

sists of 32 input signals, and connects to various signals from the system, like

interrupt lines, DMA request lines, and Cross-Trigger Interface (CTI) trigger

outputs.

DMA peripheral request interfaceconnects to an AMBA DMA Controller.

When the STM is programmed to initiate a DMA transfer, this interface re-

quests the DMA controller to write to the STM AXI.

Debug APB slave interfaceprovides access to the STM configuration and

status registers.

ATB master interfaceThis is the interface for trace output. It also provides

handshaking signals for making flush requests to the STM.

Cross-trigger interfaceThree trigger output ports are implemented to con-

nect to a cross-trigger interface in a CoreSight system, to indicate trigger

events.

External synchronization interface where the synchronous reset input

port enables an external component to control the frequency of periodic syn-

chronisation. This signal is provided for compatibility with future architectures

and can be tied low in most designs.

Clocking and resets The STM has a single clock input,which is synchronous

to the system bus clock and must use asynchronous bridges when connecting

the STM interfaces to differently-clocked buses.the STM also implements ar-

chitectural clock gating.The STM has two asynchronous active LOW resets:

ARESETn This is used to reset the AXI slave and DMA peripheral request

blocks.

STMRESETnThis resets the rest of the STM, including the hardware event

observation interface, APB interface register file, and the Trace Generation

Unit(TGU).

40

Hence understanding the complete flow and hierarchy of Arm Coresight

IP which is dedicated for debug and trace and all the IPs in the SoC design

will utilize the CoreSight IP for debug which will save a lot of resources, gate

counts and LUT’s.

41

Chapter 6

Functional Validation of

Memory Compilers

6.1 Summary for the Work done

6.1.1 Memory compilers overview

Memory compilers are kind combined architectures of single srams all together

and have flexible configurations with larger storage.The configurable sram ar-

chitecture are implemented in industries in larger scales. Each of the sram

design which is in the form of small cells are holding each single bit of memory

compilers and these small cells combined together in form of two dimensional

arrays.

From the memory compilers one can understand that the each sram memory

cell is considered to be bit cell and thing that is noticeable here is the easy

scalability of the structure. If larger size memory is needed it is achieved by

creating larger array. With new columns periphery is added, for new row -

decoder is expanded. While expanding the cell increases SRAM size and stor-

age the components used remain the same. This means that designing new

memories of different sizes from existing components can be automated.Below

is the figure depicting the basic arrangements of bit cells in sram architecture.

42

Figure 6.1: Memory array arrangement

After understanding the functionality of sram architecture and memory

compilers, there are various methods to arrange this cells so as to reduce

space and power as well as performance known as multiplexing which also

reduces size of decoder increases. For multiplexing the bit cell array.Another

approach is banking, when memory array is divided into separate banks which

are connected to the same decoder through buffers amplifying decoder signals.

As with the multiplexing, banking helps saving memory space by reusing the

same decoder for larger array.

Figure 6.2: Memory banking and multiplexing

43

As for the structure of the compiler, separate generator (assembler) struc-

tures are used which take as input architecture templates together with mem-

ory design components and generate views.The main goal is for development

was providing software capable of compiling different types of SRAM with dif-

ferent parameters, being free from intellectual Property restrictions.Below the

steps for each views.

Figure 6.3: Memory banking and multiplexing

6.1.2 Work done

For writing the testbench for the memory compilers, after understanding the

functionality of each and every pins of sram architecture, to check those func-

tionality each and every pins is to be tested in such a way for timing violation

that for one pin very exhaustively and maximum functional coverage. For

that numerous testbench approaches has been used such as linear testbench

approach where linearly the input stimulus is given to check for each test vec-

tors.But this is a very basic way of writing and consumes more space.The

second approach was writing the testbench in linear random fashion,but the

disadvantage was to that it should have readability and covering maximum

number of test vectors. But if these vectors are random then they may or may

not generate same number of input stimuli. Also,third approach could be writ-

ing the self checking testbenches bit it requires more of an extra efforts but it

will reduce the debugging time by providing the practical scene for testing the

44

Design under Test(DUT) which generates the output samples and compares it

with the golden one which should be the expected output.Based on that one

can compare the results and declare for passing and failing scenarios.Among

that that best approach for the readability and compilation becomes fast was

the approach of task and function based testbench.Consider for an example:

task read(input integer address,output integer data);

begin

@(posedge clock);

read write = 0;

address = $random;

// Do some operation to get data

end

endtask

Thus the final conclusion was writing testbench for every pin event scene, task

and function approach was better which gave us more coverage compared to

other approaches and functional coverage also increased.

45

Chapter 7

Conclusion

7.1 Results And Snapshots

Below is data metric table which showcases the overall achievement in re-

ducing the overall area, gate-counts and LUT’s which also increase in the

performance.Since system is verified in a test environment suite by applying

regression methodology for parallelism in verification methodology. One can

conclude that improvement in the data-metrics available from the emulator

logs after doing the emulation for the system.

Figure 7.1: Data metric count for the optimization

From the above data metric we have covered with almost 15 to 20 percent-

age of improvement compared to the older component.This above data have

been collected from the emulation logs after the emulation has been running

successfully.

46

7.2 Conclusion

Based on the the above work showcased, working for two different teams for

SoC integration and Memory modelling the end experience was learning on

system level as well as IP level.Since IP Optimization is much required for

saving the resource and chip area in silicon when integrated in system envi-

ronment. Major contribution to this project was reduction in power, area and

speed which is viewed after the emulation logs.On wider perspective ARM

has support from different emulator vendors,validation was done on differ-

ent emulators to get consistency in results for overall system.Thus one major

conclusion was understanding the complete automation workflow for system

integration and implementing the changes in component level which is not only

validated on IP level but on the complete environment of system on chip which

gives us the broader picture to detect more bugs at higher level.Also, writing

the testbench for memory compiler in the automated environment which gave

more readability to the team for debugging test failures easily and achieve

more functional coverage for the n numbers of compilers as the code is generic

with different configuration of memory compilers.

47

References

[1] “System validation at arm,” April 2016. [Online]. Available: https:

//community.arm.com

[2] “Arm internal documents.”

[3] K. Wong, “Smarter route optimization for mobile ip,” 16th international

symposium, 2015. [Online]. Available: http://ieeexplore.ieee.org.elibrary.

nirmauni.ac.in/stamp/stamp.jsp?tp=&arnumber=1651704

[4] “Amba axi and ace protocol specification,” August 2013. [Online].

Available: http://infocenter.arm.com/help/index.jsp

[5] “Coresight technical introduction,” August 2013. [Online]. Available:

http://infocenter.arm.com/help/index.jsp

[6] “Coresight technical introduction,” August 2013. [Online]. Available:

http://infocenter.arm.com/help/index.jsp

[7] “Coresight system trace macrocell,” August 2013. [Online]. Available:

http://infocenter.arm.com/help/index.jsp

48

https://community.arm.com
https://community.arm.com
http://ieeexplore.ieee.org.elibrary.nirmauni.ac.in/stamp/stamp.jsp?tp=&arnumber=1651704
http://ieeexplore.ieee.org.elibrary.nirmauni.ac.in/stamp/stamp.jsp?tp=&arnumber=1651704
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp

9%
SIMILARITY INDEX

7%
INTERNET SOURCES

2%
PUBLICATIONS

%
STUDENT PAPERS

1 2%

2 2%

3 2%

4 1%

5 1%

6 <1%

7 <1%

Optimization of Component IP of an Infrastructure Subsystem
ORIGINALITY REPORT

PRIMARY SOURCES

community.arm.com
Internet Source

www.boardcon.com
Internet Source

R. Goldman, K. Bartleson, T. Wood, V.
Melikyan, E. Babayan. "Synopsys' Educational
Generic Memory Compiler", 10th European
Workshop on Microelectronics Education
(EWME), 2014
Publicat ion

mobile.arm.com
Internet Source

www.ariat.hk
Internet Source

testbench.in
Internet Source

Brendan Horan. "Chapter 9 Serial Server",
Springer Nature, 2013
Publicat ion

8 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 6 words

M. Siraj Rathore, Markus Hidell, Peter Sjodin.
"PC-based Router Virtualization with Hardware
Support", 2012 IEEE 26th International
Conference on Advanced Information
Networking and Applications, 2012
Publicat ion

	Acknowledgements
	Abstract
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Approach
	Scope of Work

	Literature Survey
	Overview
	Server Based SoC Architecture
	Memory maps
	Interrupt Controller
	I/O Virtualization

	The Base Component
	Architecture definition
	Functionality of each module
	Reset Generators
	Peripheral Interrupts
	On-Chip Memories
	Watchdog Timers
	Generic Timer Control
	UART
	System Trace Macrocell
	Access Control gates
	Clock gating and power gating interface

	Optimization Methodology

	Network Interconnect
	Overview
	Master interfaces
	Slave interfaces
	Protocol Conversion

	Using ARM AMBADesigner

	CoreSight on-chip Trace & Debug
	About Coresight Component
	Coresight Components
	Debug Access
	Cross triggering
	Trace
	Buses

	CoreSight System Trace Macrocell
	Interfaces

	Functional Validation of Memory Compilers
	Summary for the Work done
	Memory compilers overview
	Work done

	Conclusion
	Results And Snapshots
	Conclusion

	References
	Optimization of Component IP of an Infrastructure Subsystem
	by Ronita Mitra

