SoC Power Management Validation

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of
Master of Technology
in
Electronics and Communication Engineering

(VLSI Design)

Submitted By
Sneha Mittal
1TMECV16

i NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May 2019

SoC Power Management Validation

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of
Master of Technology
in
Electronics and Communication Engineering

(VLSI Design)

Submitted By
Sneha Mittal
1"TMECV16

Under the Guidance of

Mr. Koteshwar Rammohan Dr. Usha Mehta

Engineering Manager Electronics and Communication Department
Intel Technologies India Pvt . Ltd. Institute of Technology

Bengaluru Nirma University, Ahmedabad

NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May 2019

Declaration

This is to certify that
1. The thesis report comprises my original work towards the degree of Master of Tech-
nology in Electronics and Communication (VLSI Design) at Nirma University and has
not been submitted elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material used.

- Sneha Mittal
17TMECV16

Disclaimer

" The content of the report does not represent the technology, tools, soft-
ware, results, opinions, beliefs or positions of Intel India Pvt. Ltd, its em-

ployees, vendors, customers, clients or associates ” .

vil

i NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

Certificate

This is to certify that the Project entitled ”SoC Power Management Validation”
submitted by Sneha Mittal (17MECV16), towards the partial fulfillment of the re-
quirements for the award of degree of Master of Technology in Electronics and Commu-
nication Engineering (VLSI Design) of Nirma University, Ahmedabad, is the record of
work carried out by her under my supervision and guidance. In my opinion, the submit-
ted work has reached a level required for being accepted for examination. The results
embodied in this Training, to the best of my knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Dr. Usha Mehta Dr. Niranjan M. Devashrayee

Internal Guide Program Coordinator (VLSI Department)
Electronics and Communication Department Electronics and Communication Department
Institute of Technology Institute of Technology

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. D. K. Kothari Dr. Alka Mahajan

Head of Department Director

Electronics and Communication Department Institute of Technology

Institute of Technology Nirma University, Ahmedabad

Nirma University, Ahmedabad

X

nte

External Certificate

This is to certify that the Project entitled ”SoC Power Management Validation”
submitted by Sneha Mittal (17MECV16), towards the partial fulfillment of the re-
quirements for the award of degree of Master of Technology in Electronics and Commu-
nication Engineering (VLSI Design) of Nirma University, Ahmedabad, is the record of
work carried out by her under my supervision and guidance. In my opinion, the submit-
ted work has reached a level required for being accepted for examination. The results
embodied in this Training, to the best of my knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Mr. Koteshwar Rammohan
Engineering Manager
Intel Technologies India Pvt . Ltd.

Bengaluru

X1

Acknowledgements

To learn new things is an opportunity, but a chance given to implement what you have
learned is a bigger opportunity. I take this opportunity to thank NIRMA University
and Intel Technologies India Pvt. Ltd. for the internship.

[am grateful to my guide Mr. Koteshwar Rammohan (Intel India Pvt. Ltd.)
for giving me this opportunity to work under his guidance. I am also thankful to my
manager Mr. Padmanabha Raghvendra, Mr. Manhas Shubham and Mr. Bitra
Ramesh for all the support throughout.

[am thankful to Dr. Usha Mehta (Nirma University) for guiding me in the project
and sharing valuable knowledge with me. From the bottom of my heart, I would like
to express sincere thanks to our PG coordinator Dr. N. M. Devashrayee and our
Head of Department Dr. D. K. Kothari who gave me an opportunity to undertake this
interesting and innovative work. I am grateful to him for his guidance, encouragement,

understanding and insightful support in the development process.
Finally I would like to thank all my Intel India Pvt. Ltd. team mates, all the faculty

members of my college, friend and family members for providing their support and con-

tinuous encouragement throughout the project.

- Sneha Mittal
17TMECV16

xiii

Abstract

Every design verification technique requires coverage metrics to assess the quality of
the design and determine when the design it is robust enough for tape-out. This project
contains the functional coverage collection flow of full chip power management and ap-
proach to increase the Coverage Percentage. At end of the Project Coverage Percentage
of 88% is achieved. This project also explains about the debugging of the full chip power

management test cases through emulation.

First step towards the coverage collection of FCPM is get all the scenario to be tested.
During this project test plan document is prepared consisting of all the scenario as Power
states are the major functionality that need to be covered are identified and added in

coverage module of the Power Checker.

After running the test case , Power Checker runs on post processing mode to generate
the Virtual Database. This database has the coverage information. All the database of
the individual test cases in the project are combined into one database to get consolidated

coverage information and final database is used to analyze missed cover items.

There are many approach to analyze missed cover items. In this project few of the
approach are discussed. Missed cover items are analyzed through simulation waveform.
Uncovered items are to be covered through identifying proper test case. Sometime cover
items are missed if required switches or fuses are disabled on SoC. These fuses are re-

sponsible for enablement of particular functionality on the SoC.
During the entire flow, many tools are used. Verdi- Coverage Point viewer is used

to check which missed and hit covered items. Verdi is also used to see the simulation

waveform. Urg is used to combine all the database of different test case into one.

XV

Abbreviations

SoC
IP
FCPM
RTL
HVP
FSM
GPC
VDB
TLM
PCU
DTS
RPT
DUT

System on Chip

Intellectual Property

Full Chip Power Management
Register Transfer Logic
Hierarchical Verification Path
Finite State Machine

Global Power Checker
Virtual Database
Transaction Level Modelling
Power Control Unit

Digital Thermal Sensor
Report

Design Under Test

XVvii

XVviil

Contents

Declaration v
Disclaimer vii
Internal Certificate ix
External Certificate xi
Acknowledgements xiii
Abstract XV
Abbreviations xvii
List of Figures xxi
1 Introduction 1
1.1 Pre - Silicon Validation 1
1.2 Motivation 1
1.3 Objective 2
1.4 Organization e 2
2 Literature Survey 3
2.1 Requirement of Low Power SoC Design 3
2.2 Coverage, the Heart of Verification 4
3 Power States 9
3.1 P-states, 9
3.2 C-states 9
3.3 Dropping in deeper C-state. 10
3.4 T-Stateso 11
4 Steps to Collect Coverage 13
4.1 Coverage Flow in SoC 13
4.2 Coverage Collection Flow 14
4.3 Test Plan Creation 14
4.4 Identification of Cover Items 15
4.5 Generation of Virtual Database 17
4.6 Analysis of Missed Cover Items 18

Xix

9

Power Checker

5.1 Introduction e
5.2 Stucture of Power Checker
5.3 Advantage of Power Checker

Analysis of Missed Cover Items

Full Chip Power Management Validation Strategy

7.1 Tools for FCPM Validation
7.2 Tool for writing Test Case
7.3 Forcing Signals
7.4 Approach to Debug Power Management Test

Results and Discussion

8.1 Coverage Percentage oo
8.2 FCPM Test Debug
8.3 Result after Test Case Run.
8.4 Debugging Power Management Flow

Conclusion

Bibliography

XX

19
19
19
23

25

27
27
28
28
28

29
29
29
30
30

33

35

List of Figures

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5

8.1
8.2
8.3
8.4
8.5
8.6

Verification management requires a broad range of coverage metrics . . . 6
Overview of the C-state and PC-state 10
Is it worth entering in C6-state 11
Coverage Flow in SoC 13
Coverage Collection Flow 14
Hierarchical Verification Plan 15
Verdi as a Coverage Point Viewer 15
Example of P-state Cover Item 16
Example of P-state Cross C-state Cover Item 16
Example of Prochot Cover Item 17
Error check of power checkero 17
Component of the Power Checker 20
Core C-state and Core P-state reference model 20
Core P-state checker 21
Package C-state tracker 22
Tracker with error message L. 23
Weekly Coverage Percentage 29
Logbook Summary 30
Logl - Emulation Run 0o 31
Log2 - Linear Instruction Pointer 31
Log3 - Instructions Description 32
Logd - PCU Tracker 32

xxi

Chapter 1

Introduction

1.1 Pre - Silicon Validation

The current VLSI technologies develops the SoC in different phases. RTL design, pre-
silicon verification, physical design and post-silicon validation are the major steps in the
VLSI product development cycle. The RTL design phase encodes all the specification and
functionality of the product. The verification phase verifies weather the RTL design is
matching the specifications or not. Pre-silicon verification phase verifies the functionality
of the design at RTL level whereas post-silicon validation phase verifies the functionality
at silicon. The product should match with the specification at every phase of verification.
Pre silicon validation is one of the most important validation phase. Pre silicon validation

phase verify the correctness of design. Basically its required modelling of the system.

1.2 Motivation

Pre-silicon debug and validation is most important phase in the product development
cycle of SoCs. The system or product should work properly at silicon level as per the
specification. Nowadays, verifying the system performance at silicon level is very difficult
as well as very expensive task. If the SoC fails at silicon levels, debugging the failure
becomes the major challenge. SoCs have very high complexity. So, before tape out, it is
required to make sure that all the critical scenarios are covered to avoid any silicon failure.
Here, the coverage plays very important role since verification engineer assess coverage
results and make critical decisions on what to do next. In fact, for the verification of large,

complex system-on-chip (SoC) designs, coverage metrics and the responses to them guide

1

the entire flow. Higher coverage percentage gives confidence whether product is ready for

tape out.

1.3 Objective

The Objective of the project is:

To explain about the flow of coverage collection
To explain about coverage architecture
To explain about approaches to increase the coverage percentage

To explain about power management test debug

1.4 Organization

In this thesis, Chapter 2 is the literature survey which will discuss about importance

of low power SoC and

Chapter 3 Type and importance of the coverage
Chapter 4 Power States and Importance of each states.
Chapter 5 Steps to collect the coverage.

Chapter 6 Architecture of Coverage Collection.
Chapter 7 Analysis of missed cover items.

Chapter 8 Approach to debug power related test

Chapter 9 Results and Discussion

Chapter 2

Literature Survey

2.1 Requirement of Low Power SoC Design

In the application, there is an ongoing quest for more functionality, performance and in-
tegration withing SoC which in turn leads to power dissipation in the range of hundreds
of watts. This has been specifically observed in the recent Intel processor variants like
Itanium?2 with the dissipation reaching 120 Watts. Devices in this class require interacted
packing, heat sinks and a cooling system.

All these culminate in multiple problems that need to be sorted out to conserve the
practicability of the upcoming applications.The enhanced integration of mobile applica-
tions required greater dependency on the battery lifetime of the system over preceding
generations. Although the headway in CMOS Technology has caused a twofold increase
in the transistor density every 18th months, the corresponding improvement in battery

technology exceeds 5 years duration.

In the current technology trend, smaller devices are gaining importance. To achieve
smaller devices, aggressive scaling is done. Scaling of the devices are done to accommo-
date more number of transistor in lesser area but due to this many problem arises. Few

are mentioned below:

e Increase in leakage power.

e Reduction in yield due to process parameter variations.

e Reliability is reduced
e Testing is becoming difficult

Packaging and cooling cost is dependent on the amount of power dissipation by the chip.

Generated heat on the chip should be taken out; otherwise it will start malfunctioning.

Demand of the portable systems and hand held devices such as phone, palmtop etc.
is increasing at high rate. Not only this, limitless functionality with limited power supply
is the requirement. Limitless functionality will increase power consumption and battery
life is becoming primary concern but unfortunately the battery technology has not kept

off with the energy requirement.

Reliability is the major issue as we move into deep sub-micron. Increase in the power
dissipation leads to increase in temperature and it has been found that for every 10 rise

in temperature, doubles the failure rate.

In offices, 80% of the power consumption is due to computer, printer and other related
devices and many of the time, these system are not in use but still they are on. So the
power management unit will automatically turn off the screen and the other power hun-
gry components are shut down. Power dissipated by these devices are mostly in the form
of heat and normally some cooling technique such as air conditioner is used to transfer

the heat to the environment.

So, the only way out is to go for low power devices.

2.2 Coverage, the Heart of Verification

Importance of Coverage

Every design verification technique requires coverage metrics to gauge progress, assess ef-
fectiveness, and help determine when the design is robust enough for tape-out. At every
step of the way and with every bug-finding technology and tool, verification engineers

assess coverage results and make critical decisions on what to do next.

In fact, for the verification of large, complex system-on-chip (SoC) designs, coverage
metrics and the responses to them guide the entire flow. The term ” coverage-driven ver-
ification” describes a methodology built around coverage metrics as the primary way to

manage verification.

Coverage is used to measure tested and untested portions of the design. Coverage is

defined as the percentage of verification objectives that have been met.

Code Coverage

Code Coverage measures how much of the design code is exercised. This include execu-

tion of design blocks, no of lines etc.

Coverage-driven verification is made possible by the wide range of structural coverage
information available in modern verification tools. The most traditional form, RTL code
coverage, has migrated from specialized add-on tools directly into the more advanced

simulators, providing much better performance and ease of use.

Once limited to line coverage, today’s code coverage metrics may also include toggle,
condition, path and finite-state-machine (FSM) coverage. These metrics can be gathered
automatically in simulation, under user control to select or exclude specific metrics or

portions of the RTL.

Code coverage is very helpful at identifying "holes” in verification: if a section of
code has not been exercised then it has not been verified. However, high code coverage
metrics do not necessarily mean that a design is bug-free or that the verification effort is
complete and thorough. Although code coverage is valuable, it should be supplemented
by the specification of functional coverage points that must be exercised for thorough

verification.

Functional Coverage

It is user defined metric that measures how much of the design specification has been
exercised in verification. These allow designers to specify corner cases based on their

knowledge of the implementation.

For example, functional coverage might track whether the verification process has

Filled and emptied every FIFO in the design.

Assertion Coverage

It checks whether sequence of behavior have occurred. Assertions, an essential part of
modern SoC verification, can also provide valuable coverage feedback. Knowing which
assertions pass in simulation and which ones fail is one form of coverage. Any assertions
failing indicate that functional bugs have been found. However, successful assertions do
not provide any run-time feedback information: they may have succeeded or they may

not have had the opportunity to execute at all.

‘lkwﬂm RTL Cmf?e

: y
alL
Simulation vIP
Testbench [Eﬁ:’“"
Stimulus i
; mml_. Design ochecking

Functional
Coverage

I—m‘ Testbench
Assertions
Coverage Code

Points

v

!

Figure 2.1: Verification management requires a broad range of coverage metrics

Conclusion

Figure 8.6 summarizes the different sources of coverage metrics used in a modern veri-
fication process. This wide range of coverage information helps verification teams assess

progress and determine what to do next.

Chapter 3

Power States

This Chapter explains about the power states and its type .

Power States are the Intels Technology to optimize the power consumption.

3.1 P-states

P-states are the power optimization technique by CPU and operating system during code
execution. In this, based on the requirement, CPU will operate at different frequency
and hence voltage. PO is the highest frequency state. It reduces the power consumption
without impacting the performance. The power management software periodically mon-
itors the processors utilization. If the utilization is less than certain threshold then it

enters in next higher P-state.

3.2 (C-states

In this technique, power optimization is done during idle mode (i.e. when no code is

executed). There are two types of C-state:
e Core C-state
e Package C-state

The processor has up to 60 plus cores in a package. Core C-state is for each core and
Package C-state.

From Figure 3.1, we can see different parameter related to C-state. For e.g. in CO state

Active state

<0 (o | [Ce/C7 PC7 Transition PC7
Core voltage*
—_—— pu—— . —_——
Core clock | | I off off off off of
PLL nr U off off off off
EE B G
LLC/L3 cache g -
Wakeup time* Active @ @ @ @ @
Package Power Reduﬂianh
Idle power* Active . .
p (1Y) - - —
Transition energy™® Active

* Rough approximation
Figure 3.1: Overview of the C-state and PC-state

Core voltage is more as compared to C7 state. Core clock is on in CO but off in C1, C2,

C3, C7. Idle power is highest in CO and minimum in PCT7.

3.3 Dropping in deeper C-state

From Figure 3.1, it is evident that as processor goes in deeper C-state, wake-up time
is increasing. So the price of dropping in deeper C-state is added latency while core is
trying to wake-up.

From the figure 3.2 Case 1, next interrupt is far when core when core is in C1, so in
this case core will go to Cé6-state. But in Case 2, two interrupt are close enough. If core

will drop in C6-state then response time or wakeup time will more.

10

.
I3 1L wWurin

entering C6?
1
| | CD
/1 Next
Interrupt
1l
L |
)I:Entering Cl time
Case 1
Is it worth
entering C67
| . . L] (:[]
/1 Executing
instructions |
C1 |
}[:Entering Cl time

Case 2

Figure 3.2: Is it worth entering in C6-state

3.4 T-States

T-state is known as Thermal Throttling state in which, it saves the processor from over-
heating and hence burning itself. It also has different T-state which depends on the
junction temperature. When the sensor register that junction temperature is reaching
certain level, Hardware power manger places the processor in different T-states depend-
ing upon the temperature using clock gating technique. Different T-state is achieved by
the percentage of clock gating. For e.g. when the percentage of clock gating is 10%, it is
T1 state or when it is 25% it can be T2 and so on.

11

12

Chapter 4

Steps to Collect Coverage

This chapter discuss about the way to get the overall functional coverage percentage.

4.1 Coverage Flow in SoC

To understand the coverage, it is required to know the complete verification flow of

coverage technology. Below figure 4.1 depict the complete verification flow diagram:

SOC evelTop level view
(Feature Extractions)

Extracted SOC Level Features

L S0C level Varification Plan

Updae/Changs in Design L 4
S0C level VE, S0C Verification
and Debugging

Y

¥

Mot CoveradHoles
Findd Tuning

Functional and Code Coverage
Analyss & Closure

.-F""'H--'HH"""*
,f’fmi-;m the mr;ﬂ:;“
S Sign-0ff Criteria
H‘“‘x\(f_,f"f

Yes

Final Funciional Verification
Closura (Verification Sign-off)

Figure 4.1: Coverage Flow in SoC

13

4.2 Coverage Collection Flow

Below figure 4.2 shows the steps involved for coverage collection:

Test Plan Creation

l

Identification of Cover Items

l

Generate Virtual Database which is
having Coverage Information

l

Analysis of missed cover items

Figure 4.2: Coverage Collection Flow

4.3 Test Plan Creation

First step toward coverage collection is creation of the Test Plan. Planning is the most

important phase of SoC verification. It contains all the scenarios to be tested at a com-

mon place which makes tracking easier because manual collection of the data may cause

in missing scenarios and hence reduction in coverage percentage.

In this project Hierarchical Verification Plan also known as hvp is used. In this all

the cover groups and cover items which need to be tested is defined in predefined format.

Below figure 4.3 shows the way to define the hvp file. After the creation of the hvp

file, it is uploaded in a tool called Verdi which shows all the cover items with respective

hit and missed. From there missed cover items are analyzed.

14

Plan Power_Management

owner = “Sneha";

description = “C-state”;

feature “Core_C-state”;
measure Line, Cond, FSM, Toggle, Branch, Assert, Group;
source = “group: sys.pkg.global_power.ref::core_cstate_fsm_trans.CC1_st",

"group: sys.pkg.global_power.ref::core_cstate_fsm_trans.CC6_st";

endmeasure|

endfeature

endplan

Figure 4.3: Hierarchical Verification Plan

Fa for fumse jen es geen g
“EEFE RN FEREE

. o g ll,H.iﬂI (= .ﬁ"lﬂqlﬂl el .l

it | Boi Grega bsahn Wals e 2] [e e |
. - e ey
o e famn Lo o g T) | Ll
R A o s . . Tutonys
= W 5 e [R 2 ERY it
B I T I 15 H%
i.’“_-"lull.jh T EHNLY KLt i
i Filpes s b w8 [EEEY WY T
. b ot e o) ol . - = -
& *
. . S pvETE—— L I B heht IR
L W it 3 e gl o s e e
L meier e [EREERT RS R
LR LR [IEREEN Y TR
e e T =< L« 1l
L B i I] i
il cem maie | PEEEY O EEETET e E 'l
s s [= |
[P p— -

Figure 4.4: Verdi as a Coverage Point Viewer

4.4 Identification of Cover Items

This section explains identification of cover groups and items for functional coverage met-

rics.

15

]

Functional Coverage Metrics measure the verification program based on functional
requirement. There are many way to do functional coverage measures. One among them
is Cover Group which is explained in this report. It consist of the state values observed

on the buses, grouping of control signals.

Cover Groups are identified based on the FSM defined in reference model and also on

control signal.

Example 1: Below is the example for one of the P-state FSM

} Name of the Cover Group

Cover pstate_fsm using pe r_unit_instance is { } State machine name

Item pstate_core CPD: bool = (core_pstate _fsm == Core CPD) using ignore

Name of the state{
(pstate. core CPD = = FALSE);

1-
]

Cover Item Name

Figure 4.5: Example of P-state Cover Item

Example 2: When P-state cross C-state

Cover pstate_cross_cstate using per_unit_instance is |

Item pstate CC1: bool = (core_pstate fsm==Core PLL && core cstate fam==
CC1) using ignore

(pstate CC1 ==FALSE);

Figure 4.6: Example of P-state Cross C-state Cover Item

Below are the few example of the important functionality for which Cover Group and

items has to be identified:

16

Prochot: It means processor hot. When the CPU reaches its maximum temperature
(100 to 105C) then prochot signal initiates thermal throttling so that CPU can reduce

its speed and save itself from over heating.

Example:

Example:

Cover prochot, fsm using per_unit_ instance is {
Item prochot: bool = (prochot_pin && core_enable) usi

(prochot ==FALSE);

Figure 4.7: Example of Prochot Cover Item

After adding the cover items, now we have to check whether the addition of the cover
items have introduced any error in the model. To check for the error, run a script known
as run_pc.pl in the test result folder of the test case of the same model. run_pc.pl is the

Perl script is which runs the power checker and generate desired logs and results.

Below figure shows results after the GPC run. The highlighted part shows that there

is no syntax error and warning. In case of any error, it displays error.

TLM report: Total number of Transactions =32838 Total trans frequency=5964

TLM report: Last Period trans number =22 Lazst period trans frg=22

TLM report: Cycles per second (frequencyl=1759454 Total Test time(secs)=38

Last specman tick - stop_run{) was called

Hormal stop - stop_runl() is completed

Checking the test ...

Checking is complete - O DUT errors, 0 DUT warnings.

[66859272] in bitwec_u-BZ at line 1936 in Bcommon_bitwvecdkdc_type: INFORM: Ending bitwec cache size:
Reusing existing coverage model ./cov_work/scope/sn_ 00000000 _3ea7 7802 .ucm

Wrote 1 cover_struct to ./ cov_work/scope/common_top_snl/sn_00000000_3ea7 7802 .ucd

sh: quit: command not found
GPC PASS
sccjo0o4534> i

Figure 4.8: Error check of power checker

4.5 Generation of Virtual Database

Once all the cover items that needs to be tested are added in the Power Checker then all

the test cases are run. Along with test run, Power Checker runs to generate the Virtual

17

Database (vdb) for each individual test cases. This vdb has coverage information.

Now when each test case has vdb, next step is to combine all the vdb into one con-
solidated vdb to get overall coverage information. URG is a Synopsys tool which is used

to combine all the individual vdb(s) into one final merged virtual database.

This merged vdb is opened along with the test plan in Verdi to find hit and missed

cover items.

4.6 Analysis of Missed Cover Items

Missed cover items are analyzed through different tracker and simulation waveforms. This

is discussed in detail in Chapter 6.

18

Chapter 5

Power Checker

This chapter describes about Power Checker and its uses.

5.1 Introduction

Power Checker is a tool that contains high level power management checker, tracker and
coverage for FC power validation. It runs on both simulation and emulation. It can also

run on lower platform by disconnecting some of the features.

5.2 Stucture of Power Checker

Power Checker structure is divided into two layer. One is the TLM which is present in

RTL code and another layer is power checker component that is in Specman.

The figure 5.1 shows the component of power checker:

TLM: TLM are scattered in several places in the core and uncore. Each TLM in
RTL code, collects the signals information from the RTLs unit signal into a data struc-
ture and sets a valid bit, if there is any update to signal. Valid bit triggers a DPI call that
samples the data structure to traces that will be used when power checker is running in
post-processing mode. The TLM reader of the power checker converts the traces of the

TLM into a structure and send it to the monitor using method port.

Monitor: It collects all the data from the TLM reader and combines all into one data
structure which will be further be used by reference model, checker and tracker. Monitor

has input and output method port. Through input port it receive signal values. And

19

Model

. -

Fabric TLM

¥ & =1

Figure 5.1: Component of the Power Checker

through output port it transfer signal values to reference model, checker and tracker.
For FC validation all the method port are connected. To use power checker for lower

platform, only required method port are connected.

Reference Model: It contains FSM for the all the features. Features are Thread
C-state, Core C-state, Core P-state, TT1, Core S1, ICCP, Ring P-state, Package C-state
and Package S-state. Core C-state and Core P-state reference model are shown in figure

5.2. Each FSM describes the features flow and the states represents the RTL current or

OX

Core-5lalus in
PCU is C36

Ck

Threads
in C3%

Threads in
C-state

4O

)
'

Thread in
Ch

Gore G-state Gore P-state
Voltage is off (C6) Fending Core-Active Xeote L Prode P-state
of Retention (C3) Break Event of Core-Active trigger
_,.-", "\-.\‘ .-r-"‘"" on Wd_Core_ \1
On

Core Pl -Dn&

W4_Core
CPD
"‘/Gc-re in CFD
b
Core_CPD
Core Pl DI’I

Figure 5.2: Core C-state and Core P-state reference model

20

expected state. For e.g. when MWAIT command is executed by thread then the FSM
state will move to W4_TCx state from the running state (CCO0).

Checker: Each feature has a separate checker. It contains two types of checking.
e Timeout Checking of Temporal states
e Checking Rule for each state of the FSM

The states which are clock depend and voltage change is limited by time is known as
temporal state. For each state of the FSM, there is checking rule that verify that relevant

indications have the expected value during the state.

For example, in figure 5.3, core clock(MCLK) is on in Idle state and off in Core_CPD
and Core_Pll_off state(Core is asleep). So these are the checking rule for each state of the
FSM.

State Timeout MLC

Idle MNo 1D Oy

CPD uninhibited
APIC timers run
MCLK rum
MNSCLE run
W4 _Core_CPD Yes 1D Oy

MNSCLE run

Core_CPD Yes CPD inhibited
APIC timers stop
MCLK stop
Core_PLL_Off Yes 1D Shutdown
CPD inhibited
APIC timers stop
MCLK stop
MNSCLE stop

W4 _Core_On Yes

Figure 5.3: Core P-state checker

21

Tracker: It prints the following under respective column with the time stamp.
e Current state of each features of all the FSM
e Signals value

Figure 5.4 is package C-state tracker. So, in the first column current C-state is
printed. The signals which are coming from PCU, Cores etc. are displayed with the

current value under respective columns.

Tme | Csl Ref-Modei| PCU Cores |
TT483 Pid Req EAsl CFai

THEA4 S

THTE53 P Rip

THB4Y

TABZ63 MPH Block

BOSE2E T5C =0 000000000004800

B47258 Trigger Ring C7

BATZEE W4_PCIR

B4904 5 F
B43608 F
B43G00 | PCIR

54403

B3456

BE4E4 3

BT

BA1523

BATA48 TSCaE-0000000000005000

BETE0D

BI031 3 Trigger MC Shutdoan

BI0INT | W4_PCEH

BI544E

Ba5E83

66123 PeodeVoode Hit

B33323

200003

00003 |PCE

HEE S EE N E EEE EE R E S E EE EEE R E E

Figure 5.4: Package C-state tracker

22

When Checker fails, then the error message will be printed in the tracker as shown in

below figure:

global_core0_ft1_s1_pstate thl xml

Time TT1 Rer~kModel | Core PCU
164 |714543 Thrd1_Status[CPD)=TT1
165 |716263 Core_Status|CPD]=TT1
166 |71673 MCtKSiop i
167 717863 Core Active=0
168 | 717663 Core_CFD
169 |717663 Wa_Core_On
170 |784173 TSC=0x0000000000002000
171 |946013 ERROR! TT1 Timeout failure, State: Wd_Core_On Duration: 200000

Figure 5.5: Tracker with error message

Coverage: This consist of Coverage Groups and items based on the functionality. It

generate vdb for all the test cases which can be used as for analysis of coverage metrics.

Coverage metrics is indication of the quality of regression or single test.

5.3 Advantage of Power Checker

Robust FC level checking: Most of the FC validation depends on self-checking test

and memory dump which is not sufficient for power management validation because this

method will not detect bug like wrong clock ratio after a GV- transition.

Fast development and maintenance: FC checker and tracker are difficult to

develop because compilation is time taking process. But this power checker is highly

modular. It can be developed in part and then later can be integrated to FC. Fixing of

checker and recompiling will take very time as it provide post-process rerun of the power

checker.

23

24

Chapter 6

Analysis of Missed Cover Items

In this chapter different approaches are discussed for the analyses of missed cover items.

The First steps towards analyzing the missed cover item is to find out which signal is
responsible for not hitting the cover items. To know this signal value should be known.
In Power checker, in tracker module add the required signal. Since tracker function is to
print the signal with value, the signal responsible for not hitting the cover items value

can be known.

Now there are many reasons for missing the cover items.

e Sometime the case is that the test case is unable to meet the required conditions
for the particular cover items. In such situation different test case which can hit the
cover items are run or modification is made to the test case to satisfy the conditions
of the cover items. For e.g. Thermal Throttling scenarios (T-state) can be hit when
the processor reaches to certain temperature. To achieve this test needs to run for
more number of cycle but the originally test were running for less number of cycle

than it actually need to create the Thermal Throttling.

e Another situation is, wrong signal is being referred by Power Checker. When the
power checker runs it takes the signal value from RTL and send it to coverage
module through TLM. And when the power checker assign wrong signal value from
design to coverage module, then cover item wont get hit. For e.g. suppose a cover

item is written to test that Core 1 should reach to C6 state but in actual design

25

core 1 is defined as Core[2], so on this kind of situations cover items wont get
hit. To verify mapping of the signal from design to coverage module, waveform in
generated. And in waveform, both design and power checker signal value can be

seen and required modification is made to hit the cover items.

Next example is for the missed scenarios related to temperature like DTS. DTS
stands for Digital Thermal Sensor. It shows the difference between current tem-
perature and maximum junction temperature. After analyzing the waveform, it is
noticed that RTL design has correct values of the signals but Power Checker has
all 0s.So finally, it is found that some fuses are not enabled in the SoC which are

required to enable temperature related scenarios.

26

Chapter 7

Full Chip Power Management
Validation Strategy

This Chapter discuss about few
e Tools for FCPM Validation
e Tool for writing Test Cases

e Approaches to debug the failure of power related test cases.

7.1 Tools for FCPM Validation

e Simulation

e Emulation

As long as the DUTSs size is manageable and the simulation time is in a day or less,
HDL software simulators are the best choice for hardware debug. They are easy to use,
quick to setup, extremely fast to compile the DUT, and superbly flexible with regard to
debugging a hardware design. Furthermore, they are also reasonably priced. However,
they become challenging at the system level when the DUT reaches into several tens of
million gates. At this level it takes simulation times in days so it increase time to market.
When the DUT reaches into several tens of million gates that time for reduce time to
market Emulation is good choice. So at FC level emulation is good choice to validate

power management.

27

7.2 Tool for writing Test Case

Require one compiler which covert any higher level languages such like system Verilog, C,
C++, Perl, Python to machine level language which we use in simulation or emulation
method. Intel have its own tool for writing test. Its targeted to create tests from fully
random to much directed flows using a powerful constraints solving technology. Key

features of tool:

e An expressive test specification language for modular, abstract, maintainable test

writing.

e Ability to direct tests towards interesting cases using constraints, biasing, and

heuristics.

e A highly-controllable, constraint-based test generator capable of generating a full

spectrum of tests, from highly random to highly directed tests.

e A declarative, maintainable, expandable model of IA32 architecture.

7.3 Forcing Signals

There are some functionality which can be verified only by forcing signal values for e.g.
DTS, prochot etc. In simulation, we can force signal with any value at any time stamp
through test case. But in emulation we cannot force signal through test case. Here, we
can force signal using injector. For that we have to write inject script. Here the time at

which values to be injected are defined in the script.

7.4 Approach to Debug Power Management Test

In emulation, there is no waveform through which debug can be done but different trackers
and log files are generated once the test run gets over. These logs gives the picture of
what processor is doing at different time and what are the values of the signal. Next
step is to analyze the log files and to find out which signal or register values are not set
properly. After finding this, waveform is generated for the particular time interval. Next
is to tracker the drivers of the signal and find the signal which is not set with the correct

value.

28

Chapter 8

Results and Discussion

8.1 Coverage Percentage

Below chart shows that the coverage percentage of 88% is achieved at the end of the

project.

Coverage Percentage

Ww34 WW35 WW36 WW37 WwW3s WW39 WwW40 Wwiail ww42 Ww43 Wwia4a Ww4s wWwiae Wwa7

—#—Coverage Percentage

Figure 8.1: Weekly Coverage Percentage

8.2 FCPM Test Debug

When the test runs, it goes through below stages:

e Command line Parsing: - In this stage, fuses are set using switches. Doing this
some features are disabled or enabled and depending upon the test plan, flow of

the test can be controlled.

29

e Create tests work area: - In this stage, environment is set depending upon

project.

e Test build: - In this stage compiler compile test case and convert high level

language to machine level language.

e Model run: - At this stage, converted machine level language loads on to the

emulation board and runs test case on emulation board.

e Creating RPT: - In this stage, it create all transaction data trackers file which
are more useful for debug purpose, coverage and checker. Post processing: - At this

stage all post process script (like coverage and checker script) runs.

8.3 Result after Test Case Run

Figure 8.2 shows Result after Test Case Run:

PAS
P]
P

3
PI
P]
PA:
PR
P

Figure 8.2: Logbook Summary

8.4 Debugging Power Management Flow

Log-1 This log is the first step towards debug. It shows the reason of the failure. Below

are two main reason:

e No Halt Encountered: It means test case timed out after running for the full cycle.

e Processor dead: When the processor is not aced, test end checker run and write in

EBx as dead and dead is printed for that particular processor.

30

Wall Freq e 10000 982 Tick

. Wall Freq from cycle 100000: 171,920 Tick £. Step time:

Wall Freq e 100000; 1.

! 006 Tick Step time:;

sec, Total time fro

sec. Total time fro

. Total time fro

Wall Freq from cycle 100000: 171,844 Tick Step time 6 sec. Total time fro

Inforn: init.py ERROR! EIESISZ006TROTHALT ERCOUNTERER. calling end_of test_jobs & terminati

Inform; commom_utils; end_of_test_jobs)

Figure 8.3: Logl - Emulation Run

Log-2 This logs shows the series of the liner instructions pointer run by processor.

From this log it can be find out at which instruction processor is stuck.

Figure 8.4: Log2 - Linear Instruction Pointer

31

Log-3 After finding out at which instruction the processor is stuck, for further debug,it
is important to know that what that instruction is trying to perform. It information can
be found in Log - 3 by searching for that instruction.

10331 0000000068ABD370 GGEB90LO00000

eg_disk00053/1ibs/Collateral /scenario_libraries/po
. t51:1173 (0-ag_stmt_19121)
RAgocenariol;

B 005%/1ibs/Collateral /scenario_libraries/pov
at 3 (0-ag_stmt_19125)

10333 00000000EENEEET TOFOLCD mwWait

eg disk0005/1ibs/Collateral /scenario_libraries,/pq
. 151:1193 (0-ag s
; done PowerMP: :c
pario_libraries,/p
: starting Power)

eg disk00053/11ibs scenario_libraries/pc
. t5l:72 (0-ag_stn

Figure 8.5: Log3 - Instructions Description

Log-4 This log shows all the operation performed by PCU and all the value set by it
in registers which is helpful in further debug.

Figure 8.6: Log4 - PCU Tracker

32

Chapter 9

Conclusion

Power Management contains some of the more complex features in the CPU. Many com-
ponents in the CPU are involved in Power Management flows. Since additional compo-
nents are added in each CPU generation, and Power goals get more aggressive, the Power
Management features become more challenging for design and validation.This enables
shifting of Power Management validation to emulation.In emulation, waveform are not
available and debug is performed from logs and trackers which has information about the
signals value and operations performed by the processors.

Coverage is also an other important aspect of Validation.It guide the engineer through
out the entire flow and also determine when the design is robust enough for tape out.
In this project, process is discussed for coverage collection through a novel agent global
power checker. Different approaches are discussed to analysis the missed cover items and

ways to increase the coverage percentage.

33

34

Bibliography

[1] A-32 Intel Architecture Software Developers Manual Volume 3 Systems Programming
Guide

2] Yossef Lampe,2011 DTTC, The GLobal Power Checker(GPC): A Noval Checker,

Tracker and Coverage Package for Power Valdation on Simulation and Emulation

[3] Sasi Pavan Majety and Rammohan Koteshwar, 2019 DTTC, Enabling Hetero Vali-
dation First TIme in Intel History: Journey of LKF Pre-Si SoC Hetero Validation

[4] Taylor Kidd, 2019,List of Useful Power and Power Management Arti-
cles, Blogs and References, http://software.intel.com/en-us/articles/

list-of-useful-power-and-power-management-articles-blogsand-references
[5] https://www.Thomaskrenn.com/en/wiki/Processor_P-states_and_C-states

[6] https://software.intel.com/en-us/blogs/2008/05/29/

what-exactly-is—-a-p-state-pt-1

35

 http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogsand-references
 http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogsand-references
https://www.Thomaskrenn.com/en/wiki/Processor_P-states_and_C-states
 https://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
 https://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1

	Declaration
	Disclaimer
	Internal Certificate
	External Certificate
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Pre - Silicon Validation
	Motivation
	Objective
	Organization

	Literature Survey
	Requirement of Low Power SoC Design
	Coverage, the Heart of Verification

	Power States
	P-states
	C-states
	Dropping in deeper C-state
	T-States

	Steps to Collect Coverage
	Coverage Flow in SoC
	Coverage Collection Flow
	Test Plan Creation
	Identification of Cover Items
	Generation of Virtual Database
	Analysis of Missed Cover Items

	Power Checker
	Introduction
	Stucture of Power Checker
	Advantage of Power Checker

	Analysis of Missed Cover Items
	Full Chip Power Management Validation Strategy
	Tools for FCPM Validation
	Tool for writing Test Case
	Forcing Signals
	Approach to Debug Power Management Test

	Results and Discussion
	Coverage Percentage
	FCPM Test Debug
	Result after Test Case Run
	Debugging Power Management Flow

	Conclusion
	Bibliography

