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Abstract

Brain tumor is an abnormal growth of tissues inside the skull. Not all tumors are
cancerous but still it affects to the nervous system. Early detection of a tumor can in-
crease the chance of survival. That’s why it is more important to identify tumor more
accurately. Manual detection needs highly understanding about the tumor and experi-
ence and mainly it is highly dependant on human perspective. With the help of deep
learning it is possible to develop a model which can identify brain tumor in a very early
stage. Model can be trained through a large number of MRI images which helps to make
it more accurate. Convolutional neural network is used to analysis visual images. It is
useful to extract different features from given image and classify into different groups.
U-Net architecture is implemented using CNN and specially designed for bio medical im-
age segmentation. U-Net uses high number of parameters which leads to the over-fitting.
It is also computationally intensive task. To overcome this issue, inception network is
introduced inside the U-Net architecture. Using it, complete deep neural network can be
formed to detect brain tumor. Glioma is a malignant type of tumor which directly affects
nervous system. Current model is based on detection of glioma tumor. Training im-
ages and ground truth images are provided under Brain Tumor Segmentation Challenge.
Data-sets are divided into HGG (High Grade Glioma) & LGG (Low Grade Glioma).

Both are used to train model as well as test it.
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Abbreviations

GM
WM
CT
MRI
FLAIR
CNN
RGB
HGG
LGG

Gray Matter.

White Matter.

Computerized Tomography.
Magnetic Resonance Imaging.

Fluid Attenuated Inversion Recovery.
Convolutional Neural Network.

Red Green Blue.

High Grade Glioma.

Low Grade Glioma.
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Chapter 1

Introduction

1.1 Brain Tumor

Brain tumor occurs due to abnormal growth of tissues inside the body. Based on a loca-
tion of a tumor it is divided into primary and secondary tumor. Primary tumor developed
inside the brain. Other hand, secondary tumor developed inside the other body parts
and then spread inside the brain. In both scenario it affects to the central nervous system

which leads to the death. Tumor may be benign (not cancerous) or malignant (cancerous).

Human brain is divided into three parts (1) Gray matter, (2) White matter and (3)
Cyrebrospinal fluid. Gray matter contains sensors for seeing, hearing, speech, emotions,
movement, decision making many others. White matter transfer information between
brain and other body parts. It also connect Gray matter internally. Cyrebrospinal fluid
covers GM & WM and it also covers empty area inside the skull. It is used as a shock
absorber. Basically brain is floating inside Cyrebrospinal fluid. Skull is a very rigid struc-

ture that is not expandable. So abnormal growth of a tissue becomes extreme problem.

Brain tumor is divided into four types:

e Grade I: It is a beginning of a tumor and very slow one. It looks like a normal

growth of a tissue. Tumor is not a cancerous and known as benign.
e Grade II: Tt is same as Grade I but tumor can change from benign to malignant.

e Grade III: It is malignant tumor and growth is very faster.



e Grader IV: It is also malignant tumor but growth is abnormally fast. Tumor may

be spread from brain to other parts of a body. It is highly risky tumor.

Location of a tumor, size and growth are key factors to diagnose brain tumor. Early
detection can increase a chance of a survival. Brain tumor can be pictured using CT scan
and MRI technologies. Those images are observed by experts or specialist. But manual
diagnosis is based on a person’s knowledge and experience in this area. And also it is

very time consuming and non-reproducible.

1.2 MRI Images

If this type of observation can be done by a computer, it is more easiest way to identify
a tumor as well as keep records of images. Computer can take images as a input and
identify key objects from the images. These objects can be used to identify tumor.

Various techniques are available for capturing the images.

e Computed Tomograph Scan: CT scan uses X-Ray to produce 3D image of body
organ. It takes multiple X-Ray to generate volumetric image which shows bones, or-
gans and tissues. But CT uses ionizing radiation through X-Ray which can increase

chance of cancer.

e Magnetic Resonance Imaging: MRI is a widely used technique for brain tumor
identification. MRI uses magnetic field and radio pulse to generate 3D images.
Depends on a magnetic field strength and radio frequency, four types of weighted
images are generated. (1) T1, (2) T2, (3) T1C, (4) FLAIR. MRI image gives exact
results even in the case of beginning of a tumor. Different weighted images are

shown in figure 1.1a, figure 1.1b, figure 1.1c and figure 1.1d [1].

Advantages of MRI images,
e [t generates high resolution images.
e [t captures different intensity of images which is important to segmentation.

e It contains less noise.



(¢) T1C (d) FLAIR

e Does not affect patients.
Disadvantages of MRI images,
e [t is time consuming to capture a single image.

e [t is very difficult to find out homogeneity in MRI images due to radio frequency

and magnetic pulse.

MRI image can not be used directly for processing. It contains noise, non-brain tissues
and some time image is not aligned. So it needs to be pre-processed before using to train

model. Problems with MRI images,
e Tumor may originated anywhere. So to find out location of tumor is difficult.

e Abnormal growth of tissues can suppress normal tissues. So it will change the shape

of brain parts.
e Every weighted image contains information. So without a single image it is very

difficult to segment image.

1.3 Segmentation

Images needs to be segmented properly to extract features. Segmentation of an image is

based on following factors.
e Application for which segmentation is needed.
e Image is taken for which body organs.

e Technique used to capture image.



Segmentation divides image with boundary and integrate region with same characteristic.
There are some issues with segmentation which is equally important to resolve before

processing.
e Due to different intensity, tissues in image can be overlapped by other one.
e Noise will added into images due to usage of sensors.
e Some organs are in motion ex. heart.
e In gray scale image, gray levels are very close to each other.

Before going for segmentation, these issues must be resolved. Noise can be removed from
filtering, using restoration motion can be removed. Segmentation can be based on color,
contrast, brightness, texture, gray scale. There are various conventional techniques to

segment image.

e Threshold based detection: Threshold method is used to convert gray scale image
into binary image. It divides image into small chunks and define a threshold value.
Using this value it converts image into binary. Threshold values must be given

initially.

e Edge based detection: Edge detection is based on identify boundary line inside

the image region. Based on boundaries image is segmented into small junks.

e Region based detection: It will retrieve pixels with same characteristic and grouped

together to form homogeneous region.

e Texture based detection: It is based on identification of texture inside the image.
Edge, Region and Texture based detection needs seed point to start. Seed point

must be specified before segmentation.

o Atlas based detection: It uses information of organs like shape, size, features and
color to detect boundary. But atlas selection is very important to get exact seg-

mentation.

All these methods need human interaction before segmentation process. So it is deeply

based on human selection and knowledge. Deep learning can solve this issue. Using it, a



network can be developed which learns from the experience to solve this type of issues.
Deep learning gives accurate result with compare of conventional segmentation method.
Convolutional neural network is deep learning model which is used to process 2D 3D
images using supervised learning. Convolutional, detection and pooling operations are
used to extract features from images at every layer. Convolutional operation required
filter at every layer to extract features. But it is difficult to decide filter at every level.
Inception module is introduced to solve this problem. Model will decide size of filter as

per it’s requirement.

1.4 Similarity Metrics

To verify a brain tumor detection system, no ground truth images are available. BraTS
(Brain Tumor Segmentation) is a part of SBIA (Section of Bio-medical Image Analysis)
and CBICA (Center of Bio-medical Image Computing and Analysis). It provides free
MRI image database to use as a ground images. Using that accuracy for a model can be

identified.
e Dice’s similarity co-efficient:

 2/AnB|

DC = ———
Al + [ B

(1.1)

Value of DC must be between 0 and 1. Here A is ground truth image dataset and

B is testing image set.

e Jaccard similarity: Similarity equation,

|AN B
J(A,B) = 1.2
(4.B) = 15 (12)
Dissimilarity equation,
d(A,B)=1-J(A,B) (1.3)

Value of J(A,B) must be between 0 and 1. Here A is ground truth image dataset

and B is testing image set.



1.5 Glioma Tumor Data-set

Glioma is one of the most common tumor. It occurs into brain or spinal code. It is
malignant type of tumor. So early detection is highly useful. Brain Tumor Segmentation
Challenge provides data-set for training. Data-set is divided into 210 number of HGG
& 75 number of LGG. Each record contains four set of MRI images as an input T1,
T1-weighted, T2 & Flair and one ground truth image for comparison. Dice co-efficient is

used to measure accuracy of an model.



Chapter 2

Literature Survey

2.1 Literature Summary



Paper Title | Year | Type Author Summary

Brain Tumor | 2016 | Article | Ms. Rupal R. | This article provides ba-

Segmentation Agravat & Dr. | sic knowledge about brain

Towards a better Mehul S. Raval | tumors, its type, method

life to detect tumors, technique
to capture visual images of
brain tumor and provides
different techniques for im-
age segmentation. MRI im-
age is used to identify brain
tumor which is a gray scale
image. For segmentation,
many conventional meth-
ods are described but with
the help of machine learn-
ing, segmentation would be
more accurate.

Deep Learning | 2017 | Paper | Ms. Rupal R. | Paper contains information

for Automated Agravat & Dr. | about Deep learning meth-

Brain Tumor Mehul S. Raval | ods to segment image ac-

Segmentation in curately. Convolutional

MRI Images Neural Network is mainly

used for image processing.
CNN contains convolution,
maxpooling layer to reduce
number of features. Fil-
ters are used to traverse
image and extract informa-
tion.  Padding, strides |,
number of filter will affect
the network accuracy. Us-
ing deep network will re-
turn more accurate results.
This paper also introduced
comparison between multi-
ple CNN architecture.

Table 2.1: Literature summary




Paper Title | Year | Type Author Summary

Going  Deeper | 2015 | Paper | Christian This paper has introduced
with  Convolu- Szegedy , Wei | new classification method
tions Liu, Yangqing | Inception for deep learning.
Jia ,  Pierre | It is very difficult to identify
Sermanet, Scott | filter size at every layer of
Reed, Dragomir | CNN. To make it more sim-
Anguelov, Du- | ple, inception model uses 3
mitru Erhan, | filters 1 X 1, 3 X 3 and
Vincent Van- | 5 X 5 with one maxpool-
houcke, Andrew | ing layer. All are com-
Rabinovich bined into one single incep-
tion layer. Detailed infor-
mation is available about
different version of incep-
tion network is available in
paper. GoogleNet is an
implementation of inception
layer. It contains 22 incep-

tion layer in stack order.
U-Net: Convolu- | 2015 | Paper | Olaf Ron- | U-Net is an implementation
tional Networks neberger, of CNN specially for image
for Biomedical Philipp Fischer, | segmentation and feature
Image Segmen- and Thomas | extraction. Ii has 3 down-
tation Brox sampling CNN layer, 2 bot-

tleneck layer CNN and 4 up-
sampling CNN layer. Paper
has introduction, working
and implementation about
U-Net architecture.

Table 2.2: Literature summary




Paper Title | Year | Type Author Summary
Brain Tumor | 2018 | Paper | Fabian Isensee, | This article provides basic
Segmentation Philipp Kickin- | knowledge about brain tu-
and Radiomics gereder,  Wolf- | mors, its type, method to
Survival Pre- gang Wick, | detect tumor. MRI image is
diction: Con- Martin ~ Bend- | used to identify brain tumor
tribution to the szus, Klaus H., | which is a gray scale image.
BraTS 2017 Maier-Hein U-Net inspired deep neural
Challenge network is proposed to de-
tect tumor. Techniques and
measures used to figure out
efficiency were listed. Out-
puts were also attached.
Automatic 2015 | Paper | Hao Dong, | This paper has introduced
Brain Tumor Guang Yang, | proposed architecture based
Detection  and Fangde Liu, | on U-Net to detect malig-
Segmentation Yuanhan Mo, | nant brain tumor. Data set
Using U-Net Yike Guo was taken from BraTS 2015
Based Fully challenge.
Convolutional
Networks

Table 2.3: Literature summary
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Chapter 3

Convolutional Neural Network

3.1 Basics of CNN

Convolutional neural network is sequence of layers, and every layer transforms image into
smaller resolution to generate number of features. It is used to process 2D and 3D images.

In CNN 3 different layers are used. (1)Convolution, (2)Pooling and (3)Fully connected

— CAR
— TRUCK
— VAN
O |
FULLY

)

layers. [13]

el
5

— BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN L rerep  SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 3.1: Convolutional Neural Network [13]

3.1.1 Image Processing

Every image is consider as a matrix of a pixel value. Based on image resolution, size of
a matrix is defined as H X W X D (H=height, W=width, D=dimension). Every pixel
is converted to a fix number based on RGB value. For large dimension images, number
of features are extremely large. Using these numbers of feature to detect tumor is very

complex computation task.

11



3.1.2 Convolution Function

To reduce number of features CNN is used. Convolutional function is used to extract
features from images. For that it performs mathematical operation between small chunks
of a image matrix and kernel or filter matrix. Size of a filter is depends upon requirement
of a network but dimension must be same for input image and filter. Filter is used to
identify pattern inside the image. Image size is H1 X W1 X D and N filters with the size
of H2 X W2 X D then output image size is, [10]

(H1— H2+ )X (W1 - W2+ 1)XN (3.1)

3.1.3 Padding

In convolution function, at each layer size of an image is reduced and also it affects to
the information inside the image. To maintain size of an image it is necessary to add
padding bits outside the image matrix. Now, image size is H1 X W1 X D, N filters with
the size of H2 X W2 X D and P padding is used. Output image size is, [10]

(H1+2P — H2+ 1)X(W1+42P — W2+ 1)XN (3.2)
H1+2P— H2+1=H1 (3.3)

H2 -1
P== (3.4)

Using equation (3.4), padding size can be identified to generate same size of output image.
Convolution has two types of padding (1) VALID and (2) SAME. For VALID option, no
padding is applied inside the convolution. And for SAME option, user has to specify

value for padding.

3.1.4 Strided Convolution

Stride is used to define step size for kernel function while traversing the image. It is used

to decrease the size of features. If image size is H1 X W1 X D, N filters with the size of

12



H2 X W2 X D, Padding is P and Stride is S, then output image size is,[10]

H1+2P - H2 W1+2P - W2
(T DX (T

F1XN (3.5)

3.1.5 Pooling Layer

Pooling layer is periodically used between two CNN layers. It takes input image and
applies some function. Most commonly it use max-pooling and average-pooling function
to extract features. It is used to collaborate values which are geometrically close to each
other and reduce size of parameters to avoid overfitting. It becomes easy to find object

in every chunks of an image. Generally two types of pooling is used in CNN.

e Max Pooling: It extracts maximum values from the chunks and put it into sin-
gle matrix. Stride and padding size is predefined and it remains constant during

execution.

e Average Pooling: It finds average value from the chunks and put it into matrix.

Following image contains matrix with the size 4 X 4 X 1, padding=0 and strides=2.
Maxpooling converts 4 X 4 X 1 size matrix into 2 X 2 X 1. [13]

12 120 | 30 [ O

8§ | 121210 2 x 2 Max-Pool - 20 | 30

34 | 70 | 37 | 4 112 | 37

112 | 100 | 25 | 12

Figure 3.2: Maxpooling Layer[!3]
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Chapter 4

U-Net Architecture

4.1 Introduction about U-Net Architecture

U-Net architecture is implementation of fully connected CNN. It is mainly designed for
medical image segmentation and detection. U-Net consist two network path Contracting
path and Expensive path. Contracting path contains down sampling which is basic CNN
architecture. Expensive path uses up sampling method to concate information with
features from contracting path. Network between these two path is known as Bottleneck

[14].

Network Architecture

Contractingpath| Expansive path

i | output
mage @
I lﬁe N il b . segmentation

1 4 map
AR E

i |
| Ik

ﬂ’@"‘ I@T@‘_D = conv 3x3, ReLU

copy and crop

@*@‘@ _ - § max pool 2x2

b ¢35 B 4 up-conv 2x2

| T ;
E E"Eﬁ’ = conv 1x1

Figure 4.1: U-Net Architecture[l/]
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4.1.1 Contracting Path

Contracting path contains 3 blocks. Each block has 3 X 3 Convolution layer, 3 X 3
Convolution layer and 2 X 2 Maxpooling function. It is down-sampling method. Number

of feature map is increase at every layer. It starts with 64, 128, 256 512 at each level.

4.1.2 Bottleneck

This part contains 2 Convolution module. It is network between Contracting and Ex-

pensive path.

4.1.3 Expensive Path

Expensive path contains 4 blocks. Each block has Deconvolution layer with stride 2,
Concatenation with the feature map from Contracting path, 3 X 3 Convolution layer and

3 X 3 Convolution layer.

4.1.4 U-Net Architecture Design

U-Net consists 5 layers for down-sampling and 4 layers for up-sampling. Description of

layer is given below.

e Downsampling

— Layer 1
* 3 X 3 Convolution Function
x 3 X 3 Convolution Function
x 2 X 2 Maxpooling Function
— Layer 2
*x 3 X 3 Convolution Function
* 3 X 3 Convolution Function
x 2 X 2 Maxpooling Function
— Layer 3
* 3 X 3 Convolution Function
x 3 X 3 Convolution Function

x 2 X 2 Maxpooling Function

15



— Layer 4
* 3 X 3 Convolution Function
x 3 X 3 Convolution Function
x 2 X 2 Maxpooling Function
— Layer 5
*x 3 X 3 Convolution Function

* 3 X 3 Convolution Function
e Upsampling

— Layer 1

* 3 X 3 Deconvolution Function

* Concatenation Function

x 3 X 3 Convolution Function

x 3 X 3 Convolution Function
— Layer 2

* 3 X 3 Deconvolution Function

x Concatenation Function

x 3 X 3 Convolution Function

x 3 X 3 Convolution Function
— Layer 3

* 3 X 3 Deconvolution Function

x Concatenation Function

x 3 X 3 Convolution Function

x 3 X 3 Convolution Function
— Layer 4

* 3 X 3 Deconvolution Function

x Concatenation Function

x 3 X 3 Convolution Function

x 3 X 3 Convolution Function

* 1 X 1 Convolution Function

16



4.1.5 Mini U-Net Architecture

U-Net architecture has 5 layers for Down-sampling and 4 layers for Up-sampling. After
5 layers of Down-sampling U-Net generates 1024 features. To identify parameters for
these much features is computationally intensive task. Another issue is, sometimes it
leads to over-fitting. To resolve these issues Mini U-Net architecture is introduced here.

It contains 3 layers for Down-sampling and 2 layers for Up-sampling.

Input Image

3% 3CNN
33X 3CNN
Maxpooling 2 ¥ 2

Deconvolution
Concatnate
3¥ 3CNN
3¥ 3CNN
1% 1 CNN

64

AN

3% 3CNN
3% 3CNN
3% 3CNN
3% 3CNN

Maxpooling 2 2
Dreconyolution
Concatnate

123

3 ¥ 3CNN
3% 3CNN

256

Figure 4.2: Mini U-Net Architecture

This architecture generates 256 features.
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Chapter 5

Inception Network

5.1 Introduction about Inception Network

While using convolution layer, it is very difficult to decide which filter size is used to get

a proper segmentation. So that issue is resolved in Inception network. Inception network

uses 1 X 1,3 X 3, 5 X 5 max-pooling layers together. Inception network reduces number

of features generated by U-Net architecture.

So number of parameters are decreased

which finally reduce the complexity of network. Each inception layer contains three

convolution function and one max-pooling function. After that results are concatenated

and pass to next layer. This is naive inception model which is shown in figure 5.1. [12]

—v] ———
T ——

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

Previous layer

T ——

3x3 max pooling

—
,_7-/-
_,--*/--
,//

Figure 5.1: Naive Inception Network[!2]

5.1.1 Dimension Reduce Inception Network

Deep neural network is computationally expensive task. To reduce the complexity and

number of features extra 1 X 1 convolution is added before 3 X 3 and 5 X 5 convolution

18



Filter
concatenation

known as dimension reduce inception network.[12]

and max-pooling. Here 1 X 1 convolution function is bottleneck layer. That inception is

ﬂ\

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

[}

1x1 convolutions

1x1 convolutions

[}

3x3 max pooling

Previous layer

Figure 5.2: Inception Network|[12]

5.1.2 GoogLeNet

Using dimension reduce inception network artificial neural network is developed which is
known as GooglLeNet. It contains 9 inception module in stack manner. It is pretty deep

classifier. [12]

c:}-l-‘—_“.?

Figure 5.3: GoogLeNet[!2]

5.1.3 Inception Network in Mini U-Net Architecture

Following image contains inception module implementation in Mini U-Net architecture.
Each convolution layer is replaced with one inception module in down-sampling. Up-

sampling is constant.
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Figure 5.4: Inception Network in Mini U-Net Architecture

Inception in Mini U-Net consists 3 layers for down-sampling and 2 layers for up-
sampling. Here between every 2 layer of inception, there is 2 X 2 Maxpooling layer is

available to reduce size of image. Description of layer is given below.

e Downsampling

— Layer 1

* 1 X 1 Convolution Function
* 1 X 1 Convolution Function - 3 X 3 Convolution Function
* 1 X 1 Convolution Function - 5 X 5 Convolution Function

x 3 X 3 Maxpooling Function - 1 X 1 Convolution Function

*

Concatenation Function (All above function’s output)

x 2 X 2 Maxpooling Function
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— Layer 2
* 1 X 1 Convolution Function
x 1 X 1 Convolution Function - 3 X 3 Convolution Function
* 1 X 1 Convolution Function - 5 X 5 Convolution Function
* 3 X 3 Maxpooling Function - 1 X 1 Convolution Function
« Concatenation Function (All above function’s output)
x 2 X 2 Maxpooling Function

— Layer 3
x 1 X 1 Convolution Function
* 1 X 1 Convolution Function - 3 X 3 Convolution Function
x 1 X 1 Convolution Function - 5 X 5 Convolution Function
x 3 X 3 Maxpooling Function - 1 X 1 Convolution Function
* Concatenation Function (All above function’s output)

x 2 X 2 Maxpooling Function
e Upsampling

— Layer 1
* 3 X 3 Deconvolution Function
x Concatenation Function
x 3 X 3 Convolution Function
x 3 X 3 Convolution Function
— Layer 2
* 3 X 3 Deconvolution Function
x Concatenation Function
x 3 X 3 Convolution Function
x 3 X 3 Convolution Function

* 1 X 1 Convolution Function
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Chapter 6

Implementation of U-Net

Architecture

6.1 U-Net Implementation

Following figures show implementation of U-Net architecture, execution and output.

8 def u_net{x, is_train=False, reuse=False, n_out=1):
9 _, X, ny, nz = x.get_shape().as_list()

10 with tf.variable_scope("u_net", reuse=reuse):

11 tl.layers.set_name_reuse(reuse)

12 inputs = InputLayer(x, name='inputs')

13 convl = Conv2d(inputs, 64, (3, 3), act=tf.nn.relu, name="convi_1")

14 convl = Conv2d(convl, 64, (3, 3), act=tf.nn.relu, name='convl_2')

15 pooll = MaxPool2d(convl, (2, 2), name='pooll’)

16 conv2 = Conv2d(peooll, 128, (3, 3), act=tf.nn.relu, name="conv2_1')

17 conv? = Conv2d{conv2, 128, (3, 3), act=tf.nn.relu, name="convz_2'}

18 pool2 = MaxPool2d{convz, {2, 2), name='pool2')

19 conv3 = Conv2d(pool2, 256, (3, 3), act=tf.nn.relu, name="conv3_1'}

20 conv3 = Convad(conv3, 256, (3, 3), act=tf.nn.relu, name="convi_2')

21 pool3d = MaxPool2d{ceonv3, (2, 2), name='pooli')

22 conv4 = Conv2d(pool3, 512, (3, 3), act=tf.nn.relu, name="conv4_1')

23 convd4 = Conv2d{conv4, 512, (3, 3), act=tf.nn.relu, name="convd_2')

24 poold = MaxPool2d(conv4, (2, 2), name='poold’)

25 convs = Conv2d(pool4, 1024, (3, 3), act=tf.nn.relu, name='convi_1')

26 conv5s = Conv2d(conv5, 1824, (3, 3), act=tf.nn.relu, name='conv5_2")}

27

28 upd4 = DeConv2d(convs, 512, (3, 3), (nx/8, ny/8), (2, 2), name='deconv4')
29 bpa = ConcatLayer([up4, conv4], 3, name="concatd')

30 convd = Conv2d(up4, 512, (3, 3), act=tf.nn.relu, name='uconvd_1')

31 conv4 = Conv2d(conv4, 512, (3, 2), act=tf.nn.relu, name="uconvd_2')

32 up3 = DeConv2d(conv4, 256, (3, 3), (nxf4, ny/4), (2, 2), name='deconv3')
33 up3 = ConcatLayer{[up3, conv3], 3, name="concati')

34 conv3 = Conv2d{up3, 256, (3, 3), act=tf.nn.relu, name='uconv3_1i'}

35 conv3 = Conv2d(conv3, 256, (3, 3), act=tf.nn.relu, name="uconv3_2')

36 up2 = DeConv2d(conv3, 128, (3, 3), {(nxf2, ny/2), (2, 2), name='deconv2')
37 up2 = ConcatLayer([up2, conv2], 3, name="concat2')

38 conv2 = Conv2d(up2, 128, (3, 3), act=tf.nn.relu, name='uconv2_1')

39 conv2 = Conv2d{conv2, 128, (3, 3), act=tf.mn.relu, name="uconv2_2')

40 upl = DeConv2d(conv2, 64, (3, 3), (nx/1, nyf1), (2, 2), name='deconvl')
41 upl = ConcatLayer([upl, convl] , 3, name='concatl')

42 convl = Conv2d(upl, 64, (3, 3), act=tf.nn.relu, name='uconvl_1')

43 convl = Conv2d{convl, 64, (3, 3), actstf.nn.relu, name='uconvi_2')

44 convl = Conv2d(convl, n_out, (1, 1), act=tf.nn.sigmoid, name='uconvi')
45 return convl

46

a7 # daf n netix s trainzFalsa reausszFales nad="SAMF' n ant=23:

Figure 6.1: U-Net Code
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Epoch 6 step 10@ 1-dice: 1.80@028 hard-dice: ©.000000 iou: 0.000000 tock 3.889466s (2d with distorticn)
** Epoch [6/18] train 1-dice: @.983871 hard-dice: @.816129 iou: ©.816129 took 374.958872s (2d with distortion)
WARNING:root:Lossy conversion from fleaté4 to uint8. Range [-@.39980888353008541, 5.14378978@771583]. Convert image to uint8 prior to saving to suppress this
Hx test 1-dice: ©.956522 hard-dice: ©.043478 iou: ©.843478 (2d no distortion)
task: all
WARNING:root:Lossy conversion from fleat64 to uint8. Range [-@.39939@8353908539, 4.25687837600788]. Convert image to uint3 prior to saving to suppress this
Epoch 7 step 10@ 1-dice: 1.80@088 hard-dice: ©.008000 iou: 0.060000 took 3.811958s (2d with distortion)
** Epoch [7/18] train 1-dice: @.975806 hard-dice: @.824194 iou: ©.824194 took 374.733843s (2d with distortion)
WARNING:root:Lossy conversion from float64 to uint8. Range [-@.399300035398854@5, 5.214816168269946]. Convert image to uint8 prior te saving to suppress thi
w= test 1-dice: ©.956522 hard-dice: ©.0843478 iou: ©.843478 (2d no distortion)
task: all
WARNING:root:Lossy conversion from fleatf4 to uint8. Range [-@.3998908353008539, 7.180385112762451]. Convert image to uint8 prior to saving to suppress this
Epoch 8 step 188 1-dice: 1.eeeeee hard-dice: ©.000068 iou: 0.800800 took 2.999961s (2d with distortion)
** Epoch [8/18] train 1-dice: 1.ee0ee@ hard-dice: ©.80000@ iou: ©.808000@ took 373.923852s (2d with distortion)
WARNING:root:Lossy conversion from fleat64 to uint8. Range [-@.399300835300854@5, 3.650774471191471]. Convert image to uint8 prior to saving to suppress thi
wx test 1-dice: ©.934783 hard-dice: ©.865217 iou: 8.865217 (2d no distortion)
task: all
WARNING:root:Lossy conversion from float64 to uint8. Range [-@.3993900353988539, 4.383833275604248]. Convert image to uint8 prior to saving to suppress this
Epoch 9 step 18@ 1-dice: 1.80@028 hard-dice: ©.088080 iou: 0.800000 tock 3.819528s (2d with distorticn)
** Epoch [9/18] train 1-dice: @.991935 hard-dice: ©.8@8865 iou: ©.003865 took 373.572268s (2d with distortion)
WARNING:root:Lossy conversion from fleat64 to uint8. Range [-@.399898035390854@5, 3.9146369357819046]. Convert image to uint8 prior te saving to suppress th
= test 1-dice: ©.978261 hard-dice: ©.821739 iou: ©.821739 (2d no distortion)
task: all
WARNING:root:Lossy conversion from fleat64 to uint8. Range [-@.3993088353008539, 7.728885650634766]. Convert image to uint8 prior to saving to suppress this
Epoch 18 step 188 1-dice: 1.@@0e8@ hard-dice: ©.28008@ iou: ©.000000 took 3.016@3@s (2d with distortion)
** Epoch [1@/1@] train 1-dice: ©.991935 hard-dice: 8.888065 iou: ©.808065 took 374.858338s (2d with distortion)
WARNING:root:Lossy conversion from float64 to uint8. Range [-@.399300035398854, 6.33875681393358]. Convert image to uint8 prior to saving to suppress this w
w= test 1-dice: 1.002008 hard-dice: ©.000000 iou: @.0000082 (2d no distortion)
task: all
WARNING:root:Lossy conversion from float64 to uint8. Range [-©.399899883539088539, 8.869766235351562]. Convert image to uint8 prior to saving to suppress this

3

Figure 6.2: U-Net Execution

Figure 6.3: U-Net Output

2 Implementation of Inception Network

Following figures show implementation of Inception network in Mini U-Net architecture,
execution and output. Figure 6.4 shows inception model inside the U-Net architecture.
Between two layer of inception one 2 X 2 max-pool layer is available. Down-sampling
is same. Definition of each inception layer is available in 6.5. Each function contains
architecture which is explained earlier. Implementation also contains method to find
accuracy for prediction. 6.8 shows 100 epocs to train model and dice co-efficient for

predicted value.
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def u_net(x, is_trainzFalse, reusezFalse, n_out=zl):

_, nx, ny, nz = x.get_shape().as_list()

with tf.variable scope("u_net", reusezreuse):
tl.layers.set_name_reuse(reuse)
inputs = Inputlayer(x, name=z'inputs')
inceptionl=inception_modell(inputs,64)
pooll = MaxPool2d(inceptionl, (2, 2), strides=(1,1), padding='SAME', namez'pcoll')
inception2=zinception_model2(pooll,128)
pool2 = MaxPool2d(inception2, (2, 2), strides=(1,1), padding='SAME', namez'pcol2')
inception3=zinception_model3(pool2,256)

up2 = DeConv2d(inception3, 128, (3, 3), (1, 1), namez'deconv2')

up2 = ConcatlLayer([up2, inception2], 3, namez'concat2')

conv2 = Conv2d(up2, 128, (3, 3), act=tf.nn.relu, namez'uconv2 1)

conv2 = Conv2d(conv2, 128, (3, 3), act=tf.nn.relu, namez'uconv2_2')

upl = DeConv2d(conv2, 64, (3, 3), (1, 1), namez'deconvl')

upl = ConcatlLayer([upl, inceptionl], 3, namez'concatl')

convl = Conv2d(upl, 64, (3, 3), act=tf.nn.relu, namez"uconvl 1")

convl = Conv2d(convl, 64, (3, 3), act=tf.nn.relu, namez'uconvl 2')

convl = Conv2d(convl, n_out, (1, 1), act=tf.nn.sigmoid, name='uconvl')
return convl

Figure 6.4: Inception Implementation

def inception_modell(input,size):
inceptionl_1_1=Conv2d(input, (size),(1,1),strides=(1,1),act=tf.nn.relu, name="convl 1 1')
inceptionl_2_ 1=Conv2d(input, (size),(1,1),padding="5AME" ,act=tf.nn.relu, name="convl 2 1)

inceptionl 2 3=Conv2d(inceptionl 2 1,(=size),(3,3),strides=(1,1),padding="S2ME",act=tf.nn.relu, name='convl 2 3
P L P L P g <

inceptionl_3_1=Conv2d(input, (size),(1,1),padding="5SAME" ,act=tf.nn.relu, name="convl_3_1")
inceptionl_3_ 3=Conv2d(inceptionl_3 1,(size),(5,5),strides=(1,1),padding="52ME" ,act=tf.nn.relu, name="convl_3 3")

maxpoolingl=MaxPool2d(input, (3,3), strides=(1,1), padding="SAME', mame="pooll 1')
convl_1=Conv2d(maxpoolingl, (size),(1,1),strides=(1,1),padding="5AME" ,act=tf.nn.relu, nams="maxconvl_1_1")

concatel=Concatlayer([inceptionl_1_ 1, inceptionl_2_3, inceptionl_3_3, convl_1], 3, name="concatl_1')
return concatel

def inception_model2(input,size):
inception2_1_1=Conv2d(input, (size),(1,1),strides=(1,1),act=tf.nn.relu, name='conv2_1_1")

inception2_2_1=Conv2d(input, (size),(1,1),padding="5AME" ,act=tf.nn.relu, name="conv2_2_1")
inception2_2_ 3=Conv2d(inception2_2 1,(size),(3,3),strides=(1,1),padding="52ME" ,act=tf.nn.relu, name="conv2_2 3")

inception2_3_ 1=Conv2d(input, (size),(1,1),padding="5AME" ,act=tf.nn.relu, name="conv2_3 1)
inception2_3_3=Conv2d(inception2_3_1,(size),(5,5),strides=(1,1),padding="52ME" ,act=tf.nn.relu, name="conv2_3_3")

maxpooling2=MaxPool2d(input, (3,3), strides=(1,1), padding="SAME', name="pool2_1")
conv2_1=Conv2d(maxpooling2, (size),(1,1),strides=(1,1),padding="54ME" ,act=tf.nn.relu, name="maxconvZ 1 1")

concate2=ConcatLayer([inception2_1 1, inception2_2 3, inception2 3 3, conv2_ 1], 3, name="concat2 1')

return concate2

Figure 6.5: Inception Implementation
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Epoch 28 step 300 1-dice: 0.029291 hard-dice: took 1.068373s (2d with distortion)
Epoch 28 step 400 1-dice: 0.044008 hard-dice: took 1.038202s (2d with distortion)
Epoch 28 step 500 1-dice: 0.041614 hard-dice: took 1.037458s (2d with distortion)
Epoch 28 step 600 1-dice: 0.028145 hard-dice: took 1.039185s (2d with distortion)
Epoch 28 step 700 1-dice: 0.035301 hard-dice: took 1.072124s (2d with distortion)
Epoch 28 step 800 1-dice: 0.201446 hard-dice: took 1.059175s (2d with distortion)
Epoch 28 step 900 1-dice: 0.018003 hard-dice: took 1.046387s (2d with distortion)
Epoch 28 step 1000 1-dice: 0.084693 hard-dice: 5 took 1.057204s (2d with distortion)

#* Epoch [28/30] train 1-dice: 0.072954 hard-dice: 0.889368 iou: 0.810367 took 1539.809535s (2d with distortion|
WARNING: root:Lossy conversion from floaté4 to uint8. Range [-0.1831204593181611, 1.2930699742223122]. Convert image to uint8 prior to saving to suppress this warning,
" test 1-dice: 0.304095 hard-dice: 0.651206 iou: 0.513046 (2d no distortion)
task: all
WARNING:root:Lossy conversion from floaté4 to uint8. Range [-0.183120459318161, 1.1169229745864868]. Convert image to uint8 prior to saving to suppress this warning.
Epoch 29 step 100 1-dice: 0.051508 hard-dice: 0.917335 iou: 0.847293 took 1.049278s (2d with distortion)
Epoch 29 step 200 1-dice: 0.063754 hard-dice: 0.889714 iou: 0.801338 took 1.050601s (2d with distortion)
Epoch 29 step 300 1-dice: 0.032095 hard-dice: 0.933938 iou: 0.876064 took 1.063587s (2d with distortion)
Epoch 29 step 400 1-dice: 0.044658 hard-dice: 0.923381 iou: 0.857667 took 1.043298s (2d with distortion)
Epoch 29 step 500 1-dice: 0.050451 hard-dice: 0.899797 iou: 0.817847 took 1.051616s (2d with distortion)
Epoch 29 step 600 1-dice: 0.022127 hard-dice: 0.950012 iou: 0.304784 took 1.067438s (2d with distortion)
Epoch 29 step 700 1-dice: 0.408533 hard-dice: 0.635037 iou: 0.465241 took 1.051144s (2d with distortion)
Epoch 29 step 800 1-dice: 0.104715 hard-dice: 0.858154 iou: 0.751550 took 1.045000s (2d with distortion)
Epoch 29 step 900 1-dice: 0.041646 hard-dice: 0.914310 iou: 0.842146 took 1.041014s (2d with distortion)
Epoch 29 step 1000 1-dice: 0.084431 hard-dice: 0.863603 iou: 0.759948 took 1.063796s (2d with distortion)
#* Epoch [29/30] train 1-dice: 0.073827 hard-dice: 0.886522 iou: 0.806913 took 1544.096103s (2d with distortion|
WARNING:root:Lossy conversion from floaté4 to uint8. Range [-0.1831204593181611, 4.234838485396721]. Convert image to uint8 prior to saving to suppress this warning.
" test 1-dice: 0.273730 hard-dice: 0.688187 iou: 0.554385 (2d no distortion)
task: all
WARNING: root:Lossy conversion from floaté4 to uint8. Range [-0.183120459318161, 2.272
Epoch 30 step 100 1-dice: 0.050373 hard-dice: 0.904411 iou: 0.825503 took 1.068631s (
Epoch 30 step 200 1-dice: 0.612223 hard-dice: 0.228883 iou: 0.129231 took 1.067773s (
Epoch 30 step 300 1-dice: 0.054584 hard-dice: 0.905538 iou: 0.827383 took 1.059849s (
Epoch 30 step 400 1-dice: 0.061839 hard-dice: 0.888555 iou: 0.799459 took 1.077518s (
Epoch 30 step 500 1-dice: 0.049993 hard-dice: 0.918673 iou: 0.849580 took 1.034741s (
(
(
(
(

81383514404] . Convert image to uint8 prior to saving to suppress this warning.
ith distortion)
with distortion)
with distortion)
with distortion)
distortion)
with distortion)
with distortion)
with distortion)
with distortion)

Epoch 30 step 600 1-dice: 0.019308 hard-dice: 0.955248 iou: 0.914330 took 1.039684s
Epoch 30 step 700 1-dice: 0.151548 hard-dice: 0.764808 iou: 0.619181 took 1.050097s
Epoch 30 step 800 1-dice: 0.067969 hard-dice: 0.884973 iou: 0.793679 took 1.040563s
Epoch 30 step 900 1-dice: 0.031631 hard-dice: 0.932815 iou: 0.874090 took 1.066303s
Epoch 30 step 1000 1-dice: 0.039958 hard-dice: 0.918799 iou: 0.849794 took 1.065421s (2d with distortion)
#* Epoch [30/30] train 1-dice: 0.066452 hard-dice: 0.893274 iou: 0.818007 took 1540.275133s (2d with distortion|
WARNING:root:Lossy conversion from float&4 to uint8. Range [-0.18312045931816112, 1.9025724331866813]. Convert image to uint8 prior to saving to suppress this warning.
" test 1-dice: 0.258468 hard-dice: 0.707703 iou: 0.576074 (2d no distortion)
task: all
WARNING: root:Lossy conversion from floaté4 to uint8. Range [-0.183120459318161, 3.487290143966675]. Convert image to uint8 prior to saving to suppress this warning
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Figure 6.6: Inception Output

Figure 6.7: Inception Output

task: all

WARNING : roo conversion from float64 to uint8. Range [-0.3844873607158661, 3.790135622024536]. Convert image to uint8 prior to saving to suppress this warning.
=* Epoch [97/188] train 1-dic 870968 hard-dice: ©.129032 iou: ©.129832 took 89.496882s (2d with distortion)

WARNING:root:Lossy conversion from float6d to uint8. Range [-@.38448736071586626, 3.014359101406846]. Convert image to uint8 prior t.
- t 1-dice: ©.854839 hard-dice: ©.145161 iou: 8.145161 (2d no distortion)

®

ing to suppress this warning

task: all
WARNING:root:Lossy conversion from float64 to uint8. Range [-@.3844873607158661, 1.9971837997436523]. Convert image to uint8 prior to saving to suppress this warning
* Epoch [98/108] train 1-dice: ©.878968 hard-dice: ©.129932 iou: ©.129832 took 88.717883s (2d with distortion)

WARNING: root: Lossy

ersion from float64 to uint8. Range [-0.38448736071586626, 2.630432604121291]. Convert image to uint8 prior to saving to suppress this warning

- t 1-dice: ©.854839 hard-dice: ©.145161 iou: 8.145161 (2d no distortion)

task: all

WARNING:root:Lossy conversion from float64 to uint8. Range [-@.3844873607158661, 3.8454248905181885]. Convert image to uint8 prior to saving to suppress this warning
=* Epoch [99/100] train 1-dice: 8.903226 hard-dice: .09 iou: 8.096774 took 88.620923s (2d with distortion)

WARNING:root:Lossy conversion from float64 to uint8. Range [-@.38448736071586626, 4.817180501194413]. Convert image to uint8 prior to saving to suppress this warning
- t 1-dice: ©.903226 hard-dice: ©.096774 iou: ©.@96774 (2d no distortion)

task: all
WARNING:root:Lossy conversion from float64 to uint8. Range [-@.3844873607158661, 5.614681243896484]. Convert image to uint8 prior to saving to suppress this warning.
=+ Epoch [106/100] train 1-dice: ©.838710 hard-dice: ©.16129@ iou: ©.161298 took 88.6@8794s (2d with distortion)

WARNING:root:Lossy con

ersion from floatb4 to uint8. Range [-0.38448736871586626, 3.6262858285415647]. Convert image to uint8 prior to saving to suppress this warning.
t 1-dice: 8.822581 hard-dice: 8.177419 iou: 8.177419 (2d no distortion)

task: all
WARNING: root
For S

Lossy con
ngle Patient:

ersion from float64 to uint8. Range [-©.3844873607158661, 3.624267816543579]. Convert image to uint8 prior to saving to suppress this warning.

t 1-dic

©.881720 hard-dice: ©.118280 iou: ©.118280 (2d no distortion)
task: all

WARNING: roo

Lossy conversion from float32 to uint8. Range [0.@, 1279.

Convert image to uint§ prior to saving to suppress this warning

Figure 6.8: Inception Network Accuracy for a Patient

Figure 6.9: Inception Network Output for a Patient
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Chapter 7

Conclusion

Brain is a very rigid structure inside the human body. Abnormal growth can damage
central nervous system. Early detection can increase the chance of survival. Automatic
tumor detection system can be more efficient in terms of time and effort. Using more
training data set with deep learning, more accurate system can be developed. Convolution
neural network is specially designed for image processing. MRI images of brain tumor
can be analyzed by trained CNN and detect tumor. CNN uses different size of filters
to traverse image and fetch features. These features are used to detect object from
images. Different size of filters generate different number of features. U-Net architecture is
commonly used for bio-medical image processing. Current architecture is computationally
very intensive and it generates large number of features which leads to over-fitting. To
overcome these issues, mini U-Net architecture is introduced which reduce number of
features. Inception model applies different possible size of filters and concatenate results
to get more accurate result. Proposed model reduced complexity of network and provided

good accuracy which is necessary to make a good brain tumor detection system.
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