
Next Generation Audio System for Chrome
OS using Sound Open Firmware

Submitted By

Smit Jayeshkumar Shah

17MCEN12

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2019

Next Generation Audio System for Chrome
OS using Sound Open Firmware

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering (Networking Technologies)

Submitted By

Smit Jayeshkumar Shah

(17MCEN12)

Guided By

Dr. Ankit Thakkar

Company Guide

Samaga Prasanna Krishna

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2019

Certificate

This is to certify that the major project entitled ” Next Generation Audio System

for Chrome OS using Sound Open Firmware ” submitted by Smit Jayeshku-

mar Shah (Roll No: 17MCEN12), towards the partial fulfillment of the requirements

for the award of degree of Master of Technology in Computer Science and Engineering

(Netwoking Technologies) of Nirma University, Ahmedabad, is the record of work carried

out by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied in

this major project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Dr. Ankit Thakkar Dr. Gaurang Raval

Guide & Associate Professor, Associate Professor,

CSE Department, Coordinator M.Tech - CSE (Networking

Technologies)

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Dr. Madhuri Bhavsar Dr. Alka Mahajan

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

iii

Certificate

This is to certify that the major project entitled ” Next Generation Audio System

for Chrome OS using Sound Open Firmware ” submitted by Smit Jayeshku-

mar Shah (Roll No: 17MCEN12), towards the partial fulfillment of the requirements

for the award of degree of Master of Technology in Computer Science and Engineering

(Netwoking Technologies) of Nirma University, Ahmedabad, is the record of work carried

out by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied in

this major project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Samaga Krishna Prasanna

Company Guide,

Software Engineering Manager,

Intel Corporation, Bangalore.

iv

Statement of Originality
———————————————————————————————————————

I, Smit Jayeshkumar Shah, 17MCEN12, give undertaking that the Major Project

entitled ”Next Generation Audio System for ChromeOS using Sound Open

Firmware” submitted by me, towards the partial fulfillment of the requirements for the

degree of Master of Technology in Computer Science & Engineering (Networking

Technologies) of Institute of Technology, Nirma University, Ahmedabad, contains no

material that has been awarded for any degree or diploma in any university or school in

any territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made. It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Dr. Ankit Thakkar

(Signature of Guide)

v

Statement of Originality
———————————————————————————————————————

I, Smit Jayeshkumar Shah, 17MCEN12, give undertaking that the Major Project

entitled ”Next Generation Audio System for ChromeOS using Sound Open

Firmware” submitted by me, towards the partial fulfillment of the requirements for the

degree of Master of Technology in Computer Science & Engineering (Networking

Technologies) of Institute of Technology, Nirma University, Ahmedabad, contains no

material that has been awarded for any degree or diploma in any university or school in

any territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made. It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Samaga Prasanna Krishna

(Signature of Company Guide)

vi

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Dr. Ankit

Thakkar, Associate Professor, Information and Technology Department, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support he has im-

parted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar, Hon’ble Head

of Computer Science and Engineering Department, Institute of Technology, Nirma Uni-

versity, Ahmedabad for her kind support and providing basic infrastructure and healthy

research environment.

A special thank you is expressed wholeheartedly to Dr. Alka Mahajan, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Science and

Engineering Department, Nirma University, Ahmedabad for their special attention and

suggestions towards the project work.

I am much obliged to Samaga Krishna Prasanna, Software Engineering Manager,

Intel Corporation, Bangalore for his special attention, guidance throughout my Intern-

ship tenure. I would also like to thank my all team members who supported me and

helped me in learning. A big thank you to Intel Corporation for giving me an immense

opportunity to learn and grow in industry.

- Smit Jayeshkumar Shah

17MCEN12

vii

Abstract

Chrome OS is an open-source project that aims to build an operating system that

provides a fast, simple and more secure computing experience for people who spend most

of their time on the web. Chrome OS uses the Linux kernel, it has a large pool of con-

tributors. Audio drivers shipped in an open-source manner, proprietary DSP firmware

will remain closed and shipped in binary. As a result, firmware issues become very dif-

ficult to address. Intel is partnering up with Linux Foundation and Google to come up

with Sound Open Firmware project. By using SOF, developers may be able to debug

the firmware issue more quickly. SOF will allow the developers to optimize footprint

and performance by adding only functionality part in their DSP. SOF SDK has total

five component, the firmware source code, firmware tools to convert firmware into ap-

propriate formats and to debug, a toolchain for firmware image creation, an emulator to

trace and debug drivers & firmware, and ASoC Linux kernel drivers. The SOF project

provides capabilities for developers to innovate and enhance DSP functionality. As of

now, SOF supports the Cadence Tensilica Xtensa instruction set architecture of DSP

hardware and software. SOF project is licensed under BSD. This project contains the

work carried out by me while integrating SOF driver to Intel platform based Chromebook.

viii

Abbreviations

SOF Sound Open Firmware.

ALSA Advanced Linux Sound Architecture.

CRAS Chrome Audio Server.

DSP Digital Signal Processing.

SDK Software Development Kit.

ARC Application Runtime Container.

OS Operating system.

DAI Digital Audio Interface.

DMA Direct Memory Access.

PCM Pulse Code Modulation.

SoC System on Chip.

PD Platform Driver.

MD Machine Driver.

IRQ Interrupt.

MMU Memory Management Unit.

Mux Multiplexer.

PD Platform Driver.

MD Machine Driver.

IO Input and Output.

DAPM Dynamic Audio Power Management.

IPC Inter Process Communication.

DAC Digital to Analog Converter.

ADC Analog to Digital Converter.

CPFE Chrome Partner Front End.
——————————————————————————————————————

–

ix

Contents

Certificate iii

Certificate iv

Statement of Originality v

Statement of Originality vi

Acknowledgements vii

Abstract viii

Abbreviations ix

List of Figures xi

1 Introduction 1
1.1 What is Chrome OS ? . 1
1.2 Architecture of the Chrome OS . 1
1.3 Chrome OS Audio stack . 2

1.3.1 CRAS - Chrome Audio Server . 2
1.3.2 ALSA - Advanced Linux Sound Architecture 3
1.3.3 Other Main Terms . 4

2 Sound Open Firmware 6
2.1 Introduction to SOF . 6

2.1.1 SOF SDK Component . 6
2.1.2 SOF Architecture . 7
2.1.3 SOF Driver Architecture . 8

3 Getting Started on Work 10
3.0.1 Prerequisites . 10
3.0.2 My Contribution and Work . 11

4 Conclusion 28
4.0.1 Conclusion . 28

Bibliography 29

x

List of Figures

1.1 Chrome OS Architecture[1] . 2
1.2 Chrome OS Audio Stack[2] . 3
1.3 Chrome OS Audio Stack Internal . 4

2.1 SOF Architecture[3] . 7
2.2 SOF Driver Architecture[3] . 9

3.1 Script to Automate the Porting . 12
3.2 Ported Patch List . 13
3.3 DMIC pop Noise Issue . 15
3.4 Patch from audio maintainer’s tree . 23
3.5 Backport patch format . 24

xi

Chapter 1

Introduction

1.1 What is Chrome OS ?

Chrome OS is a browser-based operating system where it runs on Linux kernel. Chrome

OS is introduced by Google in the year 2009. Google is optimizing Chrome OS by adding

more features & capabilities. It has millions of user across the world. Its unique hardware

and software security mechanisms make it one of the most secure operating system. It

does not need a compute-intensive machine. It is mostly focused on the education system

& consumer market but soon into the enterprise market.

Chrome OS is built using Chromium OS, Chromium OS is open source and available

to all the developers and contributors, The difference between Chromium and Chrome

OS, some of the key parts of the Chrome OS is not yet open source, Google add some

of their secret ingredients to make it more optimized and secure. Chromium OS can

be build using its source code, we can use the shell and the root access. Chrome OS is

available pre-built and already installed in the Chromebook.

Chrome OS has capabilities to run android & Linux based applications and tools.

1.2 Architecture of the Chrome OS

Figure 1.1 is the architecture stack of the Chrome OS. It has a coreboot. Coreboot is

a special lightweight firmware, designed to do a minimum task like loading the OS. It

runs on the modified Linux kernel, configured for the specific platform. It uses different

libraries like graphics, 3D, audio etc. Chrome browser does most of the work. At the

1

Figure 1.1: Chrome OS Architecture[1]

user end, chrome apps, websites, browser extension etc.

Chrome OS is one of the most secure operating system. It is a browser-based OS. All

the domains and web apps are isolated from each other, Internet will make it more secure.

The file system of the OS is designed in such a way that user’s data will be encrypted

on one partition while all root files are being stored on another partition. If it gets the

OS update, user’s data will not be impacted. It has two root partitions. In an update,

only root partitions B will be updated, root partitions A will not be altered. If fails while

update, a user can reboot the device so OS can load from root partition A. If no issue

after update, we can flip the switch to root partition B. Apart from verifying the Google’s

signature on an image, It also keeps the kernel code secure. Upon every boot, OS will

keep maintaining the hash code of each kernel code blocks, If any alteration is done in

OS kernel code then the hash function will also get change. OS will get the kernel code

tampering, a device will reboot, it can eliminate the malicious code. This feature calls

the verified coreboot.

1.3 Chrome OS Audio stack

Figure 1.2 & 1.3 is Chrome OS audio stack. CRAS & ALSA are two main components.

1.3.1 CRAS - Chrome Audio Server

CRAS allows audio to route dynamically to the newly attached devices. If audio is

routing to the device speaker, if hot-plug the headset then CRAS will route the audio to

2

Figure 1.2: Chrome OS Audio Stack[2]
Source :- www.Chromium.org

the new device. If two device hot-plugged at the same time, routing will be decided by

the priorities of device. It uses very low CPU usage and the latency of the 20ms. Audio

data will be exchanged through the shared memory.

The browser handles decoding and CRAS handles the mixing. If in two different tabs,

we are playing audio then CRAS will mix audio. CRAS will discover new devices. If a

new device hot-plugged, by using interrupt it will adjust the routing. The volume control

will be handled by the CRAS.

1.3.2 ALSA - Advanced Linux Sound Architecture

ALSA is the standard user interfaces for the user space application or the middleware.

It supports all type of Audio interfaces from consumer sound card to a professional

multichannel audio interface. It has a modularized sound driver which can be modified

at the runtime. It contains the Kernel, mixer, sound file players, API libraries and

plugins. It has the userspace library (ALSA-lib) to simplify the application programming

and provide a higher level of functionality.

3

Figure 1.3: Chrome OS Audio Stack Internal

1.3.3 Other Main Terms

DAPM - Dynamic Audio Power Management

DAPM is one of a feature which helps CRAS to use the low CPU usage, It dynamically

manage the power within an audio subsystem, developer doesn’t need to recompile or

change the code for userspace applications, DAPM manages power switching decisions

based upon any audio functionality like capture or playback and audio mixer settings

within the device.

Platform Driver

Platform driver describes the DAI and it supports. It configures the DMA for the data

transfer. Platform driver configures the PCM port of the SoC. It ensures codec and SoC

are configured correctly and matching then audio functionality can work properly.

Machine Driver

Machine driver register the sound card, binds platform driver and codec driver together.

It handles the sound card events such as push button event. It needs the board specific

driver and needs a different driver for each board configuration. Machine Driver can

contain the codec and platform-specific code.

4

Codec Driver

It is a generic driver that maps the codec topology. It provides the interface for enabling

the DAI in the codec side. Each element in the codec is a Widget. Widgets are intercon-

nected using the map. All configurable parameters should be the user configurable. It is

board independent and can reuse across a platform.

5

Chapter 2

Sound Open Firmware

2.1 Introduction to SOF

Audio driver shipped in an open-source manner, proprietary DSP firmware will remain

closed and shipped in binary. As a result, firmware issues become very difficult to address.

Intel is partnering up with Linux Foundation and Google to come up with Sound Open

Firmware project. SOF will allow the developers to optimize footprint and performance

by adding only functionality part in their DSP. SOF SDK has total five component, the

firmware source code, firmware tools to convert firmware into appropriate formats and to

debug, a toolchain for firmware image creation, an emulator to trace and debug drivers

& firmware, and ASoC Linux kernel drivers. The SOF project provides capabilities for

developers to innovate and enhance DSP functionality. As of now, SOF supports the

Cadence Tensilica Xtensa instruction set architecture of DSP hardware and software.

SOF project is licensed under BSD.

2.1.1 SOF SDK Component

Five main component of SOF SDK.

• SOF Source Code[3].

• SOF Tools[3].

• ASoC Linux Kernel Drivers[3].

• Crosstool-NG Tool-chain[3].

• Qemu DSP and Host Emulator[3].

6

Figure 2.1: SOF Architecture[3]

1) SOF source code is well written in the C language with some architecture specific

assembler. It does not link to any external dependencies.

2) SOF tools are required to convert the firmware from the ELF format to one, which

understands by the kernel drivers and tools. It used to assist with debugging running

firmware image.

3) ASoC Linux kernel driver is required to register the DSP firmware and to expose the

PCM, KControls etc.

4) Cross tool-NG used to build a GNU cross toolchain like gcc, gdb, binutils etc, which

used to build the firmware binaries. There are no restrictions to use this tool and compiler,

most preferred tool among developer.

5) Qemu is used to provide a functional emulator to simultaneously trace and debug

driver and DSP firmware code.

2.1.2 SOF Architecture

Figure 2.1 is the SOF Architecture where it has total three main component

Audio Component

In an audio component, there is a source, volume, Mixer and Mux. It is used to form an

audio processing pipeline from the host DMA buffer to the DSP DAI. It has source and

sink buffers to transform or route the audio data as a part of processing.

7

Generic Micro kernel

Generic microkernel manages and abstracts the DSP hardware for the system. It extracts

all the information about the DSP and other hardware for the system. It exports C API

for memory allocation, scheduling work, event notification, and power management. It

has many small components which kernel handles like a boot, memory, IRQs, timers,

MMU, exceptions etc.

Platform Drivers

Platform driver is used to control any external IP to the DSP IP. Platform driver includes

DMA engines and DAI controllers. It is used by the audio components and pipelines to

send/receive data to/from the host and external codecs. All process related to DMA,

SSP, Clocks will be handled by the platform driver.

Audio Task

It handles the audio pipeline at run-time. It also handles the transportation of data from

source to sink within the pipeline. In SOF pipelines are dynamic.

2.1.3 SOF Driver Architecture

Figure 2.2 is the SOF driver architecture. It has four main component.

• ASoC Machine driver[3].

• Generic PCM Driver[3].

• Generic IPC Driver[3].

• DSP Platform Driver[3].

ASoC Machine Driver

In the ASoC machine driver, It handles the codec integration, board integration and

hardware configuration with the platform driver and system. All process related to codec

& board integration will be handled the Machine driver. It binds the platform and the

Codecs drivers.

8

Figure 2.2: SOF Driver Architecture[3]

Generic PCM Driver

It has the topology which is architecture specific, configured board specific. It handles

the channel selection for different playback. DAPM is a part of PCM driver which works

in the power management within the Audio subsystem.

Generic IPC Driver

Mixer, stream and pipeline will be handled by the IPC Driver. SOF uses dynamic pipeline

which will allow OS to effectively use the pipelines.

DSP Platform Driver

Platform driver handles hardware and software IRQ. Hot-plug event and input & output

will be handled by the DSP platform driver. It also handles the input and output.

9

Chapter 3

Getting Started on Work

3.0.1 Prerequisites

I have joined Intel as a graduate technical intern in Chrome OS enabling team. The team

is responsible for the integration & validation work on Intel platform based chromebook.

Internal trainings had been conducted to give more detail about OS architecture, kernel

development, audio, mandatory tools etc. Below is the detailed list of training.

• Setting up the Linux machine. High configuration system is required for Chrome

OS development.

• Download and install required packages for development.

• Configuring the packages for development.

• Team uses different tools like git, Gerrit, JIRA. Git is a version control system.

Gerrit is team collaboration tool and code review platform. JIRA is project & bug

management tool.

• Configuring, building & flashing kernel.

• Building and installing Chromium OS.

• Updating coreboot with and without servo board.

• Pushing patches to different branches.

• Generating SOF firmware & topology file

10

3.0.2 My Contribution and Work

After different trainings, Initially I had been assigned to the lower priority issue so I can

understand OS architecture and kernel flow in detail. In the subsection, detailed work

has been explained which I had done during the internship.

(1) tty-S1 Failed to request DMA

Time Spent :- 1 Week

Issue Detail :- This issue is reported on JIRA. It was easy to reproduce, first I had

to check on given CPFE image version. CPFE image is securely stored by the Google,

only Google employee and their Chrome OS partners have an access to it. The procedure

had been given on a JIRA to reproduce the issue. I had to reboot the Chromebook for

multiple time without any peripheral device being connected to system. Developer mode

in Chromebook has a feature to check the kernel logs and root files. After enabling the

developer mode and checking kernel logs, it had this message tty-S1 Failed to request

DMA.

Root Cause :- For root cause of issue, I had to check the serial driver code because

tty-S1 is a serial port. I understand the code and find out the function with this mes-

sage. This code block will get executed as a part of bootup initialization. This error

message had no impact over the functionality of OS. The best practice is to keep the

kernel message clean. I had enabled a few more parameters and put printk statements

to understand the execution flow of code. After building and flashing the kernel on a

system. It is just a warning. As a part of the bootup initialization process, the serial

port will try to get initialized. Failing on 1st time it will print this warning message, not

an error message. After retrying for another time it will get initialized.

Solution :- I had discussed this issue with the team and we had concluded it that, since

it doesn’t have any functionality impact in OS, We can close this issue as the messages

in dmesg is only warnings.

(2) Classification and Submission of SOF & Legacy Audio patch

Time Spent :- 10 Days

Summary :- After SOF driver integration starts, Initially there was only one git master

branch which has all the SOF driver and legacy audio patches, there were around 300

11

Figure 3.1: Script to Automate the Porting

patches in which first I had to classify the patches of audio, then I had to classify the SOF

and legacy audio patches. Each patch I had to check for classification. After classification,

150+ patches had to be ported from the master branch to Intel internal branch. Manually

Cherry-picking each patch was not convenient. shell script has to be developed for this

task. I had written a shell script which can cherry-pick all the patch and cleanly apply.

Merge conflict had to be resolve manually. Figure 3.1 is the code snippet of the script.

After successful porting, I had pushed to Intel internal branch. I had to build the kernel

and test the basic audio functionality which is available

(3) ebuild changes for SOF Firmware & Topology File

Time Spent :- 3 Days

Summary :- In the SOF Development, SOF and SOF Topology file can be generated

using the source code but we have to manually add those two files in the system which

12

Figure 3.2: Ported Patch List

13

is not feasible. There are ebuild files in the Chromium OS source code which we can

access and modify according to requirement. I want to make such change that this two

files automatically be added in the given location in Chromium OS. First I need to find

that ebuild file and then I had to understand how that ebuild works. After Knowing

the structure I had to write a code, that can automatically add firmware and Topology

file. Build the Chromium OS image and check the audio sanity. I had pushed the patch

to Intel internal tree, all the developers and contributors of Chromium OS can take a

benefit of it. This ebuild repository is limited to Intel and Google hence I can not show

the code and patch.

(4) Buffer I/O error on dev loop7, Logical block 0, Async page

Time Spent :- 1.2 Week

Issue Detail :- This issue was reported on JIRA. It was not easy to reproduce. The

procedure had been given to reproduce the issue. I had flashed the CPFE image, as per

detail it was very sporadic. To reproduce the issue I had to reboot the system for multiple

times, after doing a reboot for the 8th time, I was able to reproduce the issue.

Root Cause :- As per the message, It had to do something with the file system. I had

done an analysis, only three possibilities for an issue.

First possibility was the hardware corruption, but it passes all the hardware test. The

second possibility was the bad superblocks. The file system of Chrome OS made out of

logical blocks within the superblock. I had done a test on the logical block but there was

no error. The third possibility was related to buffer. I had printed the bufferhead address

for multiple times, If it stops at the certain fix location all time, then there was something

wrong with memory. All the time it was giving the different bufferhead location so buffer

issue.

After more analysis, I had found the root cause, completion of the input and output

operation Buffer will try to close, there were few async pages which some process was

using and at the same time some other process will also try to access it, that’s why it will

not properly close and print this error message. The issue doesn’t have any functionality

impact.

Solution :- Unknown fix.

14

Figure 3.3: DMIC pop Noise Issue

(5) DMIC Loud pop noise at beginning of recording

Time Spent :- 2 Week

Issue Detail :- This issue was reported on JIRA. It was easy to reproduce, it can be seen

on the multiple Intel Platform. According to the reporter when audio recording starts

using the DMIC, one strong pop noise can be observed at the beginning of playback. To

differentiate the pop noise with the outer noise, few additional tools required. Audacity

is a free and open source tool in the Linux which can use for multiple audio related stuff.

After Recording the audio using the DMIC, I had open that audio in the Audacity and

enlarge the first few millisecond frequency waves. As per shown in figure 3.3, there was

a short pop noise sound in the beginning.

Root Cause :- Third-party application can be a buggy if it produce a pop noise. In

this issue, DMIC was creating an issue. In the DMIC recording process, first few millisec-

onds audio will be muted because of various system level process. for an example in the

DMIC audio capturing process, starting 200ms will be muted with 80% volume using 100

quantization step process. This will create a smoother transition for audio muting but in

the current case, it was not properly aligned. After providing data and logs, Firmware

team increased the first 200ms mute to 230ms mute so, with a smoother transition, there

will be no noise.

Solution :- Firmware changes has to be done for muting process. After the changes,

issue get resolved.

15

(7) Validation Support For Multiple Issues.

Time Spent :- 2 Week

Summary :- Validation is as much important as development and integration. Devel-

oper submits the patches for issues but it needs to be validated. It is a responsibility of

validator to perform a full validation of the issue, make sure that issue is resolved by the

provided patch. In the validation, I have learned about the different types of validation

techniques, post-merge validation, pre-merge validation. Daily many bugs are reported

and collected from different sources, It is the responsibility of the validator to validate the

issue and find out whether it is an actual bug or not. In an audio validation, I had per-

formed different validation for the different issues, issues like for few media files audio was

not routing to the headset, removal of HDMI Cable will cause audio to stop on system,

suspend-resume test where we have to check for the regression in the suspend-resume

functionality, validation I had to do it in a different environment with different recipe.

(8) Headset-audio, hot plug causes audio loss while streaming few media files

Time Spent :- 10 Days

Issue Detail :- This issue was reported on JIRA. Insertion of headset should be detected

by the system. After the headset detection, audio should route to the newly attached

headset. Removal of the headset should route the audio back to the speaker. In this issue

headset was getting detected by the system but audio was not routing to the headset. To

reproduce the issue. After system boot up, I had to insert the Headset. While playing

the media files, Audio was not coming out of headset.

Root Cause :- In working condition, Headset should select the dual channel to route

the audio, by checking the hardware parameter, Headset was selecting the 6 channel

which is the HDMI, that was the root cause why audio was not routing to the headset.

it was a firmware issue, we informed the firmware team about the issue.

Solution :- We received the firmware fix, Headset is now selecting the dual channel to

route the audio. Tested the issue with fix, audio was routing to headset for those media

files.

16

(9) Audio stops on extended monitor after device failing to enter suspend

mode

Time Spent :- 10 Days

Issue Detail :- Insertion of the HDMI cable with the HDMI enabled monitor should

be detected by the system. Extending or duplicating the screen can be used as a OS

feature. In both mode, it should support audio to route to external monitor by default.

In the suspend & resume test, audio firmware will get into the deep sleep state in the

suspend mode. In the resume mode, Audio firmware should awake and get load. In

ideal use case, while playing audio on external monitor, audio should keep playing after

suspend & resume test. In this issue, Audio was getting stopped on extended monitor

after suspend & resume test. To reproduce the issue, I had to connect the external dis-

play via HDMI cable. I had to play the YouTube video, audio should be routing to the

external display. On the chromebook in shell, I had to start the suspend & resume test

via suspend stress test script. Test was failed and audio stopped routing to the external

display.

Root Cause :- Audio firmware was not going into the deep sleep state in suspend mode.

In resume mode, firmware was not getting awake and load. It was a firmware issue. We

informed the firmware team.

Solution :- Firmware fix solved the issue. After the fix, Audio is keep playing on ex-

ternal monitor after suspend & resume test.

(10) SOF binary infrastructure for Intel’s Geminilake based Chromebook

Time Spent :- 15 Days.

Summary :- Firmware & Topology are the binaries required to enable the audio.

Documentation is available on https://thesofproject.github.io for how to compile and

generate the binaries. It was not reliable to copy those binary manually. There are two

ways we can deliver these binaries to Google. Intel engineer will compile and generate the

binaries and share it to Google via Partner tracker issue. Google will copy these binaries

and host it on their local server to use it with Chrome OS. If any issue comes in binaries

and after the fix, again Intel engineer needs to compile, generate and share it to Google

17

which is overhead and duplication of work. Another way is to create the ebuild file which

would handle the binary generation dynamically. I had been given a task to create these

ebuild file.

Chrome OS uses the Gentoo’s portage as the package manager. ebuild file is the

bash script which executes within special environment. It identify the specific software

package and how to handle it. I had created the ebuild file to generate binary. Alsa-lib,

Alsa-utils, crostool-ng, newlib xtensa are the different components required to compile

and generate binaries. I also had to create ebuild files for different components which

would also handle the runtime dependency. All the ebuild files I had created has the

special flags. This special flag would help to only emerge single main ebuild file, that

ebuild file had given the internal dependency which would be handled by portage. With

the help of flag, all the ebuild would get emerge and generate binaries. if later any issues

comes in firmware or Topology, and if we get fix, only git commit id needs to be updated

in the ebuild file, everything else will be the same. With some modification Google can

also use the same ebuild file for different platforms.

After binary generation, It needs to be tested to make sure the full audio function-

ality. Integrating the ebuild files in Chromium OS source code also needs to be test to

check OS won’t break while building. Build procedure to generate binaries gets changed

so ebuild file couldn’t make it to upstream.

(11) Running the IGT test suites on different environment

Time Spent :- 1 Week

Issue Detail :- IGT is the Intel GPU tools, that includes low level tools and test for

development and testing of DRM drivers. IGT source code is open source and anyone

can contribute. Validation team routinely runs the IGT test cases on the system to make

sure, there is no failure.

After the validation, two of the IGT test case was failing on chrome system. It was

easy to reproduce. Build the latest IGT test. Deploy it on target machine using the host

machine. host machine will copy the test cases on target device and trigger. after the

end of test, IGT script will return the result with full detail of logs. Plane flipping and

Cropping test was failing. I was able to reproduce it on chrome system. while testing

on the Ubuntu with same kernel version on same platform reference board. this two test

18

cases was passing.

Root Cause :- while checking the kernel and bisecting, few required patches were miss-

ing. bisecting the kernel further figured out the missing patches .

Solution :- After applying the missing patches in chrome kernel, test case were passing

successfully. submitted the patches in Chrome OS kernel. Pre merge & post merge vali-

dation had been done to make sure no functionality break.

(12) Validation for full audio cycle.

Time Spent :- 4 Days

Summary :- Before making any audio release to Google, full validation cycle for audio

is required. Validation process will ensures there is no issue in the current audio func-

tionality, If any issue comes then we can fix it before making the release. with proper

validation process, high quality product can be delivered.

In full audio validation cycle, all the test cases has been already defined. It covers the

features like playback, recording, AV sync, suspend & resume stress. In the playback,

functionality of speaker, headset, USB headset, external monitor using HDMI and DP

cable gets validated. Use cases like hotplug of the device should detect by system, audio

should route to the device after detection. unplug of the device should route the audio

back. Audio should play without any noise and seamless playback is required to pass test.

Playback from the different sources like web and local gets validate. In the Recording

functionality, different recording scenarios will be covered. Recording in the DMIC, USB

headset mic & Headset mic gets check. Recording should be seamless, smooth and without

any noise.

In the A/V Sync, I had tested the media files from different sources like Web, Local,

USB etc. Audio and video should be synced properly and audio should be clear and

smooth to hear. I had tested the HDMI and DP monitor in both extended and duplicate

monitor mode whether sync is proper or not. In the suspend & resume mode, I had

checked the video playback, audio playback on speaker and external monitor. Audio

should keep playing after suspend & resume test on device.

I had done the validation for different boad with different releases.

19

(13) Validation Support

Time Spent :- 7 Days

Summary :- Validation required the proper understanding on issue, expected behaviour

and actual behavior.

I had done the pre merge & post merge validation on below listed issues. pre merge

validation is when the fixes has not been merged in upstream chrome kernel. validation

with local patch. Post merge validation is when the fixes had been merged in upstream

and active in Chrome OS kernel.

• Unplug headset caused speaker mute.

• Sometimes GUI will not have Headset option listed.

• audio continues to play on removal of the USB which has source file.

• suspend & resume test with 100 iteration.

• Headset-audio, hot plug causes audio loss while streaming few media files.

(14) KGDB enabling on Chrome OS, Kernel Debugging

Time Spent :- 15 Days

summary :- Debugging can be very hard if you are not aware about right process. GNU

debugger is one of the tool you can use to debug the code written in c, c++. Objective-c,

Fortran etc but GDB can not use to debug the kernel. Kernel has special debugger named

KGDB, We can set the software breakpoints, Hardware breakpoints, return register values

etc. I had given task to find the BKM and try KGDB on Chrome OS. I had to start

learning with minimum instructions given on Chromium OS developer documentation.

following is the BKM. Prepared by me to use KGDB on Chrome OS.

• First step is to enable the KGDB flags in the kernel configuration. following are

the configurations which needs to be enable.

– KGDB: Kernel Debugger

∗ KGDB: use KGDB over serial console

∗ KGDB: allow debugging with traps in notifiers

∗ KGDB kdb: Include kdb command functions to be enabled by default

20

∗ KGDB: keyboard as input device

∗ KGDB: continue after catastrophic errors

• Check whether kernel function symbols are enabled in kernel Makefile, if not then

configure the Makefile with ”kbuild cflags+=-g”.

• Build the kernel with USE=”kgdb vtconsole” emerge-BOARD chrome-OS-kernel-

VER (specify the board name and kernel version)

• Install the kernel on system and reboot.

• KGDB requires serial connection. since chromebooks doesn’t have the serial port,

servo board is needed to create serial connection. connect the servo board with host

and target device.

• Use cros sdk –no-ns-pid to enter the chroot in host machine. Start servo board with

sudo servod -b octopus npcx & (use specific board name instead of octopus npcx),

make sure there is no trace back warning and error.

• Use servo board command to check the port number, which servo board port is

using for connection.

• Check the serial port number using the minicom console. check the dmesg in the

target system for the serial port number. set the serial port number and baud rate

in system’s boot parameter and reboot,

• Freeze the kernel to it’s current state by giving, echo g ¿ /proc/sysrq-trigger in

target system.

• start GDB console on host machine, but do not stop the servo board running

process. x86 64-cros-linux-gnu-gdb /build/octopus/usr/lib/debug/boot/vmlinux -

ex target remote /dev/pts/5 (/dev/pts/5 can be different for others)

• GDB session should start without any error and warnings.

• Try setting hardware breakpoints and use stepping etc.

I had shared this BKM with other engineers in team. It has been verified, it is work-

ing. With my BKM debugging kernel using KGDB would be more easy. Engineers can

21

set the functional breakpoints and check the specific register values.

(15) Audio enablement on new Intel platform based Chromebook

Time Spent :- 15 Days

Summary :- After the successful release of SOF in Geminilake based chromebooks.

SOF based audio solution has been decided for new Intel platform based Chromebook.

Our Chrome OS team is responsible for the end delivery to Google. I had to start working

on Audio enablement on new Intel platform based Chromebook. Initially we had to set

up and use the Intel internal infrastructure which is based on 4.19 Chrome kernel. Topic

branch has been created specifically for Audio patches where I need to port. Audio

functionality has been split in the multiple releases.

In the 1st release, there was 190+ patches which I need to port. Released branch is

for our reference, I can not take patches directly from released branch. ASoC patches are

available in either audio maintainer’s branch or in Patchwork which maintains mailing

list patches. It is preferred to take patch from mainline upstream kernel if it is available

there. All the patches should be in proper format. All upstream patch should have

UPSTREAM tag, patch from maintainer’s branch should be tagged as FOROMGIT,

patchwork patch should be tagged as FROMLIST and local patches should be tagged as

CHROMIUM. All the patches should have the location from where I pulled it and what

is the original commit id. All the patches will be tagged with partner bug id and required

test field, Bug Id is a partner tracker issue id, where Intel and Google will discuss about

each release and issues.

Here below is the sample of final patch (Figure 3.4) which is merged in 4.19 Chrome

kernel. Here in the figure 3.4, Patch is tagged as FROMGIT because it is from audio

maintainer’s tree. It has original commit id, location, Bug Id and Test field. I had started

taking patches and apply cleanly. If any patch had conflict while applying then I had

to understand the conflict and resolve it. To resolve the merge conflict either there will

be some dependent patches which is required to pull before or few additional chromium

patches is causing the conflict. To find the dependency I need to check the history on

that file and see which patch is missing. If there is any missing patch then I have to apply

it before. If there is any extra patch in the Chrome kernel then I have to manually do

backport. Backport patch look like same as shown below in figure 3.5 with backport tag

22

Figure 3.4: Patch from audio maintainer’s tree

patch, I also need to add conflict detail.

After applying all the patch, I had to build the Chrome OS kernel and see whether

is there any failure. Ported Kernel should have same functionality as released branch.

Initially I had tested kernel with nocodec configuration where special codec will get loaded

since board doesn’t have codec on it. It should load the sof-nocodec configuration instead

of HD Audio. To prevent the HD audio get loads, I had to blacklist the module in the

/etc/modprobe.d/ location.

I had handled two audio release. All the patches I had ported initially in Intel in-

ternal infrastructure got merge and later reused to port in 4.19 chrome kernel. All the

patches are available in Chrome 4.19 kernel. Before pushing patches, I had to do the

sanity testing and check what is working and what is not working. In the sanity test, I

had to check various Playback, Recording etc.

(16) Multiple audio autotests were failing with error

Time Spent :- 1 Week

Issue Detail :- Autotests are designed in such way that it will require less human

interaction and it will test the functionality and give back the results. To get the autotest,

While building the packages for Chromium OS, special flags needs to give. Autotest will

23

Figure 3.5: Backport patch format

24

be triggered from host machine. Host machine will copy the tests in target machine and

script will trigger the autotest script it on target machine.

In this issue, with loopback dongle recently added few audio test cases were failing.

As per the reporter, connecting the loopback dongle, and triggering the tests, it should

pass but it was failing. Loopback dongle is not available in the market. Google released

the circuit diagram of loopback dongle that we had done the rework by Lab team. To

reproduce the issue, I had to insert the loopback dongle in the headset jack and trigger

the autotest from the host machine. All the five test cases were failing which is mentioned

below.

• audio AlsaLoopback

• audio CRASFormatConversion

• audio CrasLoopback

• audio SeekAudioFeedback

• desktopui AudioFeedback

Root Cause :- I had a suspect that it was a dongle issue. For the confirmation, I took

the the different Intel platform based chromebook and ran the test on them with same

dongle. On those systems also test were failing. We had ordered a new dongle and IT

team has done the rework as per Google. With the new dongle out of 5 only 3 autotest

were failing. out of 3, one I suspect because of the proxy issue in the Intel network. After

resolving the proxy issue, audio CrasLoopback was also passing. Root cause was the old

loopback dongle.

Solution :- With the new Loopback dongle, out of 5 autotest, only 2 are failing now.

Those two autotest which was failing are using the Chrome UI component, For Google

also this two autotest are failing. Intel and Google both are working to fix the issue.

(17) SOF and SOF Topology infrastructure for new Intel platform based

Chromebook

Time Spent :- 20 Days.

Summary :- As per mentioned in the issue & task 10, After the build procedure gets

25

changed to generate the SOF Topology & Firmware binaries. I had to reuse the old ebuild

files and modify according to the new build procedure. After reading the documentation

to generate binaries, two more new components has been introduced. In the old way,

Alsa-lib, Alsa-utils, Crosstool-ng, new-lib xtensa, firmware source code and Topology

source code components were there. In the new build procedure, xtensa-overlays has

been introduced, firmware and topology source code had been merged in the one single

directory. Now it requires to use the cmake version above 3.10. xtensa-overlays has the

Intel platform specific configuration files requires to generate the binaries. I had modified

the older ebuild files to use it with new platform. I had to create new ebuild files which

will accommodate the new changes. I had created the ebuild file for the xtensa-overlays,

It was also integrated in the other ebuild file. I had face the several challenges with new

build procedure, because new source code requires to use the cmake version 3.10 and

above. I can not use the chroot cmake.

Chroot is the special environment for chromium os source code maintained by Google.

I can not upgrade the cmake version because other ebuild file in the chromium OS may

get affect. To solve the issue and to give the demo to Google, I had created the new ebuild

file for the cmake, which will download and install the cmake in specific location. I had

tricked my SOF Topolog & Firmware ebuid file to not use the cmake from the chroot but

take it from the specific location where my cmake installation is present. Now binaries

can be generate using my ebuild file. Integration into the OS is on progress. Once all the

ebuild file can emerge using the chromium os build image. I can present it to Google to

use Intel’s solution for the binaries.

(18) New audio release for Intel’s Geminilake based chromebook

Time Spent :- 20 Days.

Summary :- In the last audio release to Google for Geminilake platform, It has several

issue. Patches were not upstream worthy and can create issue at long time if merged it

into the Chrome 4.14 kernel. To resolve the issue, Intel and Google has decided to revert

the last audio release. New v4 SOF patches are already present in the mailing list which

will reduce the significant number of SOF patches, It was strong recommendation to use

the V4 SOF patches. To use the new release and take the V4 SOF patches, I had to

reverted 160+ around patches in the Chrome 4.14 kernel. In the revert process, I had to

26

find the revert chain or else it would not cleanly revert and conflict. With the help of

Google and Intel engineer, All the 160 patches from old release had been reverted.

New V4 SOF patches, requires additional dependent ASoC patches. As per the release

I took all the required ASoC patches and backported in the Chrome 4.14 kernel. Same as

the mentioned in task & Issue 15. I need to give proper tag, new bug id and Test field. I

need to specify the location of the patch. If any patch conflict while applying then I need

to find the dependent missing patches or backport them manually by resolving the merge

conflict. I need to make sure, after resolving the conflict manually, It should not break

any functionality. I had backported every V4 SOF patch and required ASoC patches.

While doing the sanity testing, Playback and recording was working but HDMI playback

was not working. First we suspect that it is Firmware issue. After further checking,

release was based on the Linux 4.14 kernel because of that it was not having the required

i915 patches required for HDMI playback.

By the time V5 SOF patches are already landed in the mailing list and Intel strongly

recommended to use the newer version of SOF patches. To resolve the HDMI playback

issue, new release had been made using chrome 4.14 kernel. In this release, I had to revert

the same older release patches using the revert chain. Again I had to take the required

ASoC patches with all the proper format and tags. This time it was easy as most of the

ASoC patches I can reuse from my older backport. I had done all the backporting with

the V5 SOF patches.

After communicating with Google about new release. Google wants release in specific

order to merge it easily in the 4.14 kernel. earlier it was revert chain + ASoC patches (

Upstream + Fromgit) + SOF but now Google wants it in ASoC (upsream + fromgit)

+ Revert chain + SOF patches. I had arranged the patches in the correct order. After

that Google wants all the Upstream patches in the upstream order so I need to resolve

the order issue. After the sanity test, Allyesconfig is failing with my patches. fix is in

progress.

I had created two patches and submitted to Google. One patch will normalize the

kernel configuration and second patch will enable the required configuration to enable

the SOF audio on chrome 4.14 kernel. Patches has been pushed to Google and it is in

merging process.

27

Chapter 4

Conclusion

4.0.1 Conclusion

Next generation audio system using Sound Open Firmware has been introduced to elim-

inate the issue with closed source DSP firmware. With the help of SOF now contributors

and developers can easily integrate their pre-written algorithms. Developers can debug

the firmware issue more easily. Open-source nature will help SOF for more contribution

from community.

28

Bibliography

[1] G. LLC, “Chromium os architecture.” https://www.chromium.org/chromium-os/

chromiumos-design-docs/software-architecture.

[2] G. LLC, “Chromium os.” http://www.chromium.org/chromium-os.

[3] L. foundation, “The sof project.” https://thesofproject.github.io/latest/

introduction/index.html.

29

https://www.chromium.org/chromium-os/chromiumos-design-docs/software-architecture
https://www.chromium.org/chromium-os/chromiumos-design-docs/software-architecture
http://www.chromium.org/chromium-os
https://thesofproject.github.io/latest/introduction/index.html
https://thesofproject.github.io/latest/introduction/index.html

	Certificate
	Certificate
	Statement of Originality
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	What is Chrome OS ?
	Architecture of the Chrome OS
	Chrome OS Audio stack
	CRAS - Chrome Audio Server
	ALSA - Advanced Linux Sound Architecture
	Other Main Terms

	Sound Open Firmware
	Introduction to SOF
	SOF SDK Component
	SOF Architecture
	SOF Driver Architecture

	Getting Started on Work
	Prerequisites
	My Contribution and Work

	Conclusion
	Conclusion

	Bibliography

