
Prevention of cross site request forgery in
CRM

Submitted By

Taslim Agwan

17MCEI01

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2019

Prevention of cross site request forgery in
CRM

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering (INS)

Submitted By

Taslim Agwan

(17MCEI01)

Guided By

Dr. Zunnun Narmawala

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2019

Certificate

This is to certify that the major project entitled “PREVENTION OF CROSS SITE

REQUEST FORGERY IN CRM” submitted by TASLIM AGWAN (17MCEI01),

towards the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science and Engineering of Nirma University is the record of work carried

out by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination.

Dr. Zunnun Narmawala Dr. Sharda Valiveti

Associate Professor, Associate Professor,

CE Department, Coordinator M.Tech - CSE (INS),

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Dr. Madhuri Bhavsar Dr. Alka Mahajan

Professor and Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Taslim Agwan, Roll. No. 17MCEI01, give undertaking that the Major Project

entitled “Prevention of cross site request forgery in CRM” submitted by me, to-

wards the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science & Engineering (Information & Network Security) of In-

stitute of Technology, Nirma University, Ahmedabad, contains no material that has been

awarded for any degree or diploma in any university or school in any territory to the

best of my knowledge. It is the original work carried out by me and I give assurance

that no attempt of plagiarism has been made.It contains no material that is previously

published or written, except where reference has been made. I understand that in the

event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Dr. Zunnun Narmawala

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Dr. Zun-

nun Narmawala, Associate Professor, Computer Engineering Department, Institute

of Technology, Nirma University, Ahmedabad for his valuable guidance and continual

encouragement throughout this work. The appreciation and continual support he has

imparted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sharada Valiveti , Hon’ble Head of

Computer Engineering/ Information Technology Department (INS) , Institute of Tech-

nology, Nirma University, Ahmedabad for her kind support and providing basic infras-

tructure and healthy research environment.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar , Hon’ble Head of

Computer Engineering Department, Institute of Technology, Nirma University, Ahmed-

abad for her kind support and providing basic infrastructure and healthy research envi-

ronment.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

Taslim Agwan

17MCEI01

v

Abstract

The project aims to provide security against cross-site request forgery attack in CRM

(customer relationship management). CRM system manages huge customer data. Cus-

tomer data needs to be protected from the OWASP security risks. Which includes cross-

site request forgery. This is a type of attack where unapproved actions are performed

using a legitimate login session that the web application trusts. The current approach is

using XSRF tokens to prevent CSRF attack in GWT application. PMD tool is used to

analyze the use of vulnerable GWT APIs. CSRF Guard is used to defend against CSRF

attack on JAVA platform. This module implements the CSRF guard configurations for

Oracle JET framework in CRM. CSRF token injection approach is introduced.

vi

Abbreviations

CRM Customer Relationship Management.

CSRF / XSRF Cross Site Request Forgery.

POS Point Of Sale.

HTTP Hyper Text Transfer Proeocol

URL Uniform Resource Locator.

XSS Cross Site Scripting.

GWT Google Web Toolkit.

HTTP Hyper Text Transfer Proeocol

HTML Hyper Text Markup Language

JSON JavaScript Object Notation

XML Extensible Markup Language

OJET Oracle JavaScript Extension Toolkit
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

1 Introduction 1
1.1 Overview . 1
1.2 Objective . 2

2 Literature Survey 3
2.1 Survey on the mechanism behind CSRF attack 3
2.2 Survey on Existing CSRF defense Techniques 5

3 CSRF Prevention approach in GWT (Google Web Toolkit) 6
3.1 Google Web Toolkit . 6

3.1.1 GWT . 6
3.1.2 Current Approach . 6

4 Scanning the GWT code for vulnerabilities 9
4.1 GWT vulnerable APIs . 9
4.2 Scannig the GWT code . 10
4.3 GWT RPC calls . 12

4.3.1 Fuzzing GWT RPC calls . 13
4.3.2 Enumerating GWT RPC calls . 13

4.4 JAVA code scanning using Fortify . 13

5 Using CSRF Guard in Oracle JET framework 16
5.1 OJET framework . 16
5.2 How CSRF Guard works . 16
5.3 Limitations of CSRF Guard . 17
5.4 CSRF token injection approach . 17

5.4.1 DOM manipulation . 18
5.4.2 JSP tag library . 21

viii

6 Conclusion 25
6.1 Conclusion . 25

Bibliography 26

ix

List of Figures

1.1 Point of sale and CRM . 2

2.1 CSRF Attack . 4
2.2 POST request malicious code [1] . 4

3.1 The XSRF token approach in GWT . 7

4.1 GWT code scanning using PMD . 10
4.2 New GWT rules . 12
4.3 GWT RPC call stream . 12
4.4 Fuzzing the GWT RPC calls . 13
4.5 Enumerating the GWT RPC calls . 14
4.6 Fortify process flow . 14
4.7 Fortify scanning results . 15

5.1 How CSRF Guard works . 17
5.2 CSRF token validation in CSRF Guard 18
5.3 CSRF token injection in CSRF Guard 19
5.4 CSRF Guard . 20
5.5 CSRF Guard . 21
5.6 CSRF Guard . 22
5.7 CSRF Guard . 22
5.8 Servlet properties . 23
5.9 CSRFGuard.js properties . 23
5.10 Dynamic JS generation flow . 23
5.11 Exposed token name using JSP tag library 24
5.12 Exposed token values using JSP tag library 24

x

Chapter 1

Introduction

1.1 Overview

POS system is widely used in the retail industry in order to enhance sales and productiv-

ity. Figure 1.1 shows the integration between POS and CRM. There is a number of POS

systems integrated with a central customer data maintenance system like CRM systems.

CRM is a suite of integrated services designed to increment revenue and profitability

for retail enterprises. It collects customer details (transaction details, contact details)

from the POS system, in order to analyze customers purchase pattern and target high

potential customers. Hence prevention of data loss is needed.

This prevention module specifically targets CSRF attack prevention in CRM. CSRF

is an attack that ploys the victim’s browser to execute unauthorized commands in CRM

to which an associate is logged in. CSRF attack is performed using social engineering,

which tricks the authorized user into sending a fake request to a server. As a victim

is authorized while sending a forged request. It is hard to differentiate an authorized

request from a fake request.

Previously, in CRM, XSRF tokens were used to prevent such vulnerabilities. Exist-

ing prevention techniques are time-consuming and weak. These techniques need manual

handling to apply protection techniques into an existing CRM system. Minimal manual

efforts are needed in the new technique (CSRF guard).

1

Figure 1.1: Point of sale and CRM

1.2 Objective

• To reduce Retail Industry loss.

• To reduce the number of application layer attacks (CSRF attack).

• To integrate the defense technique for new Oracle JET framework.

• To overcome the inadequacies of XSRF tokens and other existing prevention tech-

niques.

• To ease the risk of bypassing a new approach, that is introduced.

• To reduce data loss and theft using a secure exchange of CSRF prevention.

2

Chapter 2

Literature Survey

2.1 Survey on the mechanism behind CSRF attack

Stateless protocol (HTTP) can not recognize whether all the requests belong to a par-

ticular user or not. Protocol use client-side cookies to maintain user-specific state. The

browser will automatically add this cookie information in HTTP header[1]. This is not

helpful when there is a huge data exchanging between client and server. To address this

issue sessions are used. The session ID is generated, in order to distinguish the legitimate

user. Manual or automatic URL rewriting is used to append session ID into URL. Here

session ID is used as absolute authentication token[2].

Session mechanism can be exploited by the attackers. The session ID is equivalent to

the users original credentials. XSS exploit can be used to reveal the session ID. Attacker

misuses the fact that web applications cannot differentiate between session ID from an

authorized user ID and stolen session ID. An attacker can misuse authenticated users

session to perform fraud transactions, password change or any other illegal activity[1].

A typical GET request for a $500 bank transfer :

GET HTTP://bank.com/transfer.do?acct=PersonB&amount= $500 HTTP/1.1

A hacker can modify this request and make this transfer to his own account.

GET HTTP://bank.com/transfer.do?acct=AttackerA&amount=$500 HTTP/1.1

This malicious link can be embedded into any simple looking hyperlink or it can be

embedded into an image link also :

Read

more!

3

If a bank is only using POST requests, then malicious code snippet can be executed

using form tag, with automatic implementation of JavaScript functions :

Figure 2.1 and 2.2 demonstrate the CSRF attack mechanism using POST request.

Figure 2.1: CSRF Attack

Figure 2.2: POST request malicious code [1]

When user click on such malicious links, while he is logged into his bank account.

Then these scripts can be executed successfully using authenticated sessions.

4

2.2 Survey on Existing CSRF defense Techniques

1. Using POST requests :

Common CSRF prevention practice is to use POST request instead of GET request.

As this attack takes advantage of the default behavior of the HTML parser in the

victims browser, this approach is not enough. As discussed in the previous survey,

using JavaScript attacker can perform CSRF attacks even when POST requests are

used [3].

2. Captchas :

Adding captchas will force the user to interact with the browser (application) till

the last and final request. The web application can not include captchas to each

and every operation that is being performed. Thus, it is not an ideal solution[2].

3. Referer header check :

The HTTP referer header is a field that shows the location of the webpage that

linked to the source being requested. It is the address from where the request is

being originated. The legitimacy of the referer can be checked. The browser can

maintain white-list of accepted referer headers. But sending this referer header

can result in leaking the sensitive information to unauthorized parties. So, referer

headers can be empty. Which can make impossible to detect the CSRF attack.

An attacker can use browser specific settings to trigger CSRF exploit using empty

referer headers[4].

4. Proxy based solution :

Separate module is included in the existing system with minimal attempt. Proxy is

placed at the server side, between the target application and web server [1]. Proxy

inspects and modifies the requests. Proxy modifies the response, in a way that

future requests will contain valid tokens. Take countermeasures when an invalid

token is encountered. Proxy associates the users session to the valid token and

maintains the token table.

5

Chapter 3

CSRF Prevention approach in GWT

(Google Web Toolkit)

3.1 Google Web Toolkit

3.1.1 GWT

Google Web Toolkit is used to create complicated JavaScript front-end web applications

in JAVA. GWT builds a web application by compiling Java code base into JavaScript

front end code. Vulnerability assessment on GWT applications is not feasible because

interdependency between the Java code base and compiled JavaScript front end code is

tough to detect. Java source code can be analyzed to detect potential vulnerabilities.

3.1.2 Current Approach

XSRF tokens were used previously in GWT. These XSRF tokens are generated randomly

and are difficult to predict. An attacker can obtain important parameters by analyzing

or using other exploits and can forge the request. Adding XSRF tokens is an effective

method.

NoForge is a server-side agent, which executes the token mechanism and rewrites the

URL [5]. Dynamically created links cannot be handled by this mechanism. Two-level

token defense mechanism can also be used, to harden the security. The first level token

is used for base security and for higher security second level token is used. Transactions

requests only proceed further if they contain the correct token.

Correct CSRF token does not mean that sent data is trustable. But it means that it

6

Figure 3.1: The XSRF token approach in GWT

was the users intention to send the data. Token Table is maintained [3.1].

1. Every session ID is associated with a certain token number.

2. Token is checked for every request. If a request has token, the corresponding session

ID is checked in the token table. If a request contains valid token, then request is

declared as valid.

3. Proper token is attached along with the response. Classes used for vulnerability

protection :

• Com.google.gwt.safehtml.shared :

Creates safe and encoded HTML content

• SimpliSafeHtmlrenderer :

Safey renders HTML code

7

• XsrfProtectedService

8

Chapter 4

Scanning the GWT code for

vulnerabilities

4.1 GWT vulnerable APIs

1. Text and HTML

This classes exposes HasHTML and SetHTML methods, which can inject malicious

JavaScript code when it is called with untrusted data[6].

2. URLs

Anchor and HyperLink uses setHref methods and accepts the URL. which is not

trustworthy if URL is not encoded[6].

3. HTTP Request and cookies

RequestBuilder class allows direct changes in request header and URLs. Response

class allows accessing response headers. Cookies class grants access to browser

cookies on the client machine. Data should not be manipulated using Getters and

setters used for cookies [6].

4. Server communication

RemoteServiceServlet and AsyncCallback classes are used to process the request

and send the response to the matching client. This also uses XsrfProtectedService

and XsrfProtectedServiceServlet classes to protect the application against CSRF[6].

5. Dynamic scripts

9

RemoteServiceServlet and AsyncCallback classes are used to process the request

and send the response to the matching client. This also uses XsrfProtectedService

and XsrfProtectedServiceServlet classes to protect the application against CSRF[6].

6. Parsing

JSONParser and XMLParser accepts the data in JSON or XML formats. This data

not be malicious[6].

4.2 Scannig the GWT code

To check instances of vulnerable APIs analysis is needed. Instead of checking it manually,

the static analysis tool was used. Fortify is one of the tools used to check the vulnerability

in the code. But this tool can only scan java code JSP script. And this did not work in

GWT [6]. FindBugs and PMD tools were used to analyze the GWT code. These tools

do not contain default rules for analysis, but custom rules can be written. PMD runs the

analysis on parsed Java code base.

Custom PMD rules can be created to analyze the use of vulnerable APIs. These rules

are created according to the listed APIs in the previous section. These rules were used to

check the use of vulnerable APIs. Potential vulnerabilities are counted per line of code.

Figure 4.1 shows the PMD tool processing for GWT code scanning.

Figure 4.1: GWT code scanning using PMD

Existing PMD Rules :

• GWTSetTextRule

– looks for setText and hasText methods. Texts (from an untrusted source)

should be encoded.

10

• GWTUrlRule

– All the URLs provided by user should be URIEncoded. Looks for setHref and

setURL methods.

• GWTRequestBuilderRule

– This rule counts the use of RequestBuilder, JsonRequestBuilder and XML-

HttpRequest.

• GWTCookieRule

– Looks for setCookie and getCookie methods.

• GWTRemoteServiceRule

– Check if remote services are XSRF protected or not. Checks for the usage of

RemoteService and XsrfProtectedService,

• GWTScriptRule

– Checks the usage of scriptElement and scriptInjector.

• GWTXMLParseRule

– Parsing malicious XML can be risky. This rule counts the use of XML-

Parser.parse.

New PMD Rules created :

• Figure 4.2 shows the new GWT rules created.

11

Figure 4.2: New GWT rules

4.3 GWT RPC calls

GWT is used to create AJAX enable Java web applications. GWT allows developers

to assemble the components in Java and Then the JAVA code is compiled into advance

JavaScript for browsers to run.

GWT RPC calls allow sending JAVA custom objects (data) from front end JavaScript

code to JAVA back end server code. Whenever the AJAX call is made, serialized JAVA

objects are streamed.

RPC call is sent as HTTP POST request from the browser. The serialized stream is

in plain text and separated by vertical lines as shown in Figure 4.3.

Figure 4.3: GWT RPC call stream

This stream is made of three different parts :

• Header

• String table

12

• Payload

4.3.1 Fuzzing GWT RPC calls

In GWT RPC calls, there are payload values that can be manipulated and are fuzzable.

GWT Parse tool is used to automate the process of extracting the values within an RPC

call payload that can actually be changed and are vulnerable. Security bugs are identified

in this application using this tool.

GWT front end code is too obfuscated to read, so it is tough to recognize all the

fuzzable values passed in the request by only viewing the JS code.

This is a command line tool which creates new payload with all fuzzable value iden-

tified. As shown in Figure 4.4 default output will replace fuzzable string value with %s

and numeric value with %d.

Figure 4.4: Fuzzing the GWT RPC calls

4.3.2 Enumerating GWT RPC calls

Enumeration is used to reduce the complexities exposed by GWT code. GWT obfuscates

the client-side JavaScript code. Which makes difficult to enumerate the GWT RPC calls.

GWT Enum tool is used to list non-functioning vulnerable methods that may not

normally be seen usually. GWT JavaScript code is obfuscated to enumerate all exposed

method calls.

The tool results are shown in Figure 4.5.

4.4 JAVA code scanning using Fortify

Fortify is used to recognize and handle security vulnerabilities in software to reduce

security risks. Fortify SCA is a static analysis tool processes the code in a similar manner

to code compiler.

Fortify uses an intermediate tool that runs on the code base and converts into compiled

code that is optimized for the fortify-analysis.

13

Figure 4.5: Enumerating the GWT RPC calls

This tool also uses Fortify customized Rules to analyze the code base, if there are

any security violations of secure coding practices. An audit workbench is available for

viewing the results and analyzing the issues.

Figure 4.6 describes working of fortify tool and Figure 4.7. shows the scanned results.

Figure 4.6: Fortify process flow

14

Figure 4.7: Fortify scanning results

15

Chapter 5

Using CSRF Guard in Oracle JET

framework

5.1 OJET framework

JET framework is a collection of JavaScript libraries, which is used to develop client-side

web applications. In this new framework, the CSRF guard is used in order to prevent

CSRF attack.

5.2 How CSRF Guard works

CSRF guard has a unique design pattern to prevent attacks. A developer can customize

the token injection strategy. CSRF guard can be configured based on the requirement,

without compromising the usability of the application.

Figure 5.1 describes how CSRF Guard works to prevent CSRF attack. CSRF Guard

analyze the incoming requests to protect the web resources. It injects a token to specified

resources into the HTML source code and then verifies this token, when user request for

the particular resource or HTML page. This validation is done on the server side.

Figure 5.2 shows the token validation process. CSRF Guard checks the page specific

token in each request. If page specific token is no yet generated, then it verifies the request

by checking per-session tokens and creates page specific tokens. This page specific token

will be checked for all subsequent requests.

Figure 5.3 gives the details of token injection process. CSRF Guard initiate the

random token and adds it to the web pages that needs a protection.

16

Figure 5.1: How CSRF Guard works

Figure 5.4 and 5.5 demonstrate that CSRF Guard attaches the CSRF token to every

single web resources. Figure 5.6 and Figure 5.7 shows that CSRF Guard throws access

denied message when unauthorized user access the resources.

5.3 Limitations of CSRF Guard

• CSRF token can be stolen By hijacking the session, man in the middle attack or

XSS attack.

• Relevant pages for token injection needs to be analyzed. File configurations need

to be set manually. But introducing scripts into pages needs manual work.

• Dynamically generated requests are the requests created by scripts while running

on the web browsers. That cannot be accessed before running it. CSRF Guard fails

to add a token to this type of dynamically created forms.

5.4 CSRF token injection approach

CSRF Guard injects the CSRF preention tokens within the HTML pages generated by

the application. In an earlier version of CSRF Guard, token injection process was time-

17

Figure 5.2: CSRF token validation in CSRF Guard

consuming, as file configuration needs to be set manually. and Relevant pages for token

injection also needs to be analyzed.

CSRF Guard 3 has a better approach to inject CSRF tokens dynamically. JavaScript

DOM manipulation JSP tag library strategies are used as CSRF token injection strategies.

This technique requires minimum efforts to inject tokens.

5.4.1 DOM manipulation

This technique dynamically plants the CSRF tokens into the DOM that is currently

loaded in the browser. Dynamic JS file needs to be added. This solution requires a

servlet mapping and adds a JS HTML tags in all the pages sending requests to access

protected web resources.

DOM manipulation will not work for a specific application context. JavaScript file

used for token injection is created by the servlet file.

Owasp.CsrfGuard.jar this JAR file needs to be added in the application’s classpath.

18

Figure 5.3: CSRF token injection in CSRF Guard

servlet class needs to be declared in the web.xml file. Figure 5.8 displays the servlet

properties set. Figure 5.9 displays properties set on dynamically generated JS file.

Initialization params supported by the JS servlet :

• source-file

location of JS template file that needs to be used to automate the process.

• domain-strict

Boolean value deciding whether or not the JavaScript code should add the pre-

vention tokens in links that point to the same domain from which the HTML is

originated.

• referer-pattern

Requesting the servlet access pages needs to match this particular referer-pattern.

• cache-control

caching the dynamic JS file reduces network traffic and increase performance.

19

Figure 5.4: CSRF Guard

• inject-into-forms

Boolean value describing weather token needs to be added as hidden fields to the

HTML.

• inject-into-attributes

determines weather JS should inject token to src or href attributes or not.

All requests originated from the HTML page needs to ensure that accurate CSRF

token is submitted for the user’s current session. Adding the dynamic JavaScript code

does not protect the web page. Rather, the script ensures the CSRF token is transferred

within all web requests created by the current page.

This JavaScript code will start an event handler with window.on load. Once the event

is triggered, the code will analyze every HTML tag within the DOM looking for either

form tags and or tags having href or src attributes.

According to defined params, forms are dynamically updated to include the CSRF-

Guard tokens. Figure 5.10 explains the flow for token injection in CSRFGuard.

20

Figure 5.5: CSRF Guard

5.4.2 JSP tag library

This library allows using of JSP tags that give access to the token name, the token value

and the token name-value pair. To use this library, JAR should be added to the classpath.

Using this library, the Developer can have control over token injection process and can

place the token at an appropriate location. This token details can be obtained using this

library.

• Display token name [Figure 5.11]

• Display token value [token value should be used with URI attribute. The value of

the URI attribute is the URI for which the token value will be posted] [Figure

5.12]

• Display token name and value pair.

Generated form with the CSRF token : This JSP library implements a pattern

to generate HTML forms with the CSRF prevention token automatically embedded in

it. This strategy makes it easy to integrate the CSRF token, for unique token per page

model. proper validation and encoding need to be performed.

Generated link with the CSRF token : This library generates the HTML anchor

tags with the CSRF prevention token automatically added as a query string parameter.

21

Figure 5.6: CSRF Guard

Figure 5.7: CSRF Guard

The tag accepts attribute name-value pairs and simply adds them to the page. As

an outcome, you are free to use the same attribute values made available in a standard

HTML anchor and the prevention tokens will be added in the link.

22

Figure 5.8: Servlet properties

Figure 5.9: CSRFGuard.js properties

Figure 5.10: Dynamic JS generation flow

23

Figure 5.11: Exposed token name using JSP tag library

Figure 5.12: Exposed token values using JSP tag library

24

Chapter 6

Conclusion

6.1 Conclusion

This project includes source code scanning and CSRF attack prevention approach. Ex-

isting PMD rules were used to scan the GWT code initially. New PMD rules are added

to scan the front end GWT code thoroughly. New fortify rules are created to scan the

back end JAVA code. XSRF token approach was used to reduce the CSRF attack risk in

GWT application. CSRFGuard is used to prevent CSRF attack in a new JET applica-

tion. A new technique for token injection is introduced using JSP tag library and DOM

manipulation to overcome the limitations of manual CSRF token injection.

25

Bibliography

[1] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request forgery at-

tacks,” in 2006 Securecomm and Workshops, pp. 1–10, Aug 2006.

[2] E. D. Alvarez, B. D. Correa, and I. F. Arango, “An analysis of xss, csrf and sql

injection in colombian software and web site development,” in 2016 8th Euro American

Conference on Telematics and Information Systems (EATIS), pp. 1–5, April 2016.

[3] J. You and F. Guo, “Improved csrfguard for csrf attacks defense on java ee platform,”

in 2014 9th International Conference on Computer Science Education, pp. 1115–1120,

Aug 2014.

[4] B. Chen, P. Zavarsky, R. Ruhl, and D. Lindskog, “A study of the effectiveness of csrf

guard,” in 2011 IEEE Third International Conference on Privacy, Security, Risk and

Trust and 2011 IEEE Third International Conference on Social Computing, pp. 1269–

1272, Oct 2011.

[5] T. Alexenko, M. Jenne, S. D. Roy, and W. Zeng, “Cross-site request forgery: At-

tack and defense,” in 2010 7th IEEE Consumer Communications and Networking

Conference, pp. 1–2, Jan 2010.

[6] D. Larson, J. Liu, and Y. Zuo, “Analyzing the vulnerabilities in gwt code and ap-

plications,” in 2014 Second International Symposium on Computing and Networking,

pp. 525–530, Dec 2014.

26

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Overview
	Objective

	Literature Survey
	Survey on the mechanism behind CSRF attack
	Survey on Existing CSRF defense Techniques

	CSRF Prevention approach in GWT (Google Web Toolkit)
	Google Web Toolkit
	GWT
	Current Approach

	Scanning the GWT code for vulnerabilities
	GWT vulnerable APIs
	Scannig the GWT code
	GWT RPC calls
	Fuzzing GWT RPC calls
	Enumerating GWT RPC calls

	JAVA code scanning using Fortify

	Using CSRF Guard in Oracle JET framework
	OJET framework
	How CSRF Guard works
	Limitations of CSRF Guard
	CSRF token injection approach
	DOM manipulation
	JSP tag library

	Conclusion
	Conclusion

	Bibliography

