Prevention of cross site request forgery in
CRM

Submitted By
Taslim Agwan
17"MCEIO1

g NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May 2019

Prevention of cross site request forgery in

CRM

Major Project

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology in Computer Science and Engineering (INS)

Submitted By
Taslim Agwan
(17MCEI01)

Guided By

Dr. Zunnun Narmawala

ij NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

NAAC ACCREDITED ‘A’ GRADE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May 2019

Certificate

This is to certify that the major project entitled “PREVENTION OF CROSS SITE
REQUEST FORGERY IN CRM?” submitted by TASLIM AGWAN (17MCEI01),
towards the partial fulfillment of the requirements for the degree of Master of Technology
in Computer Science and Engineering of Nirma University is the record of work carried
out by him under my supervision and guidance. In my opinion, the submitted work has

reached a level required for being accepted for examination.

Dr. Zunnun Narmawala Dr. Sharda Valiveti

Associate Professor, Associate Professor,

CE Department, Coordinator M.Tech - CSE (INS),
Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.
Dr. Madhuri Bhavsar Dr. Alka Mahajan

Professor and Head, Director,

CE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

il

Statement of Originality

I, Taslim Agwan, Roll. No. 17MCEIO1, give undertaking that the Major Project
entitled “Prevention of cross site request forgery in CRM” submitted by me, to-
wards the partial fulfillment of the requirements for the degree of Master of Technology
in Computer Science & Engineering (Information & Network Security) of In-
stitute of Technology, Nirma University, Ahmedabad, contains no material that has been
awarded for any degree or diploma in any university or school in any territory to the
best of my knowledge. It is the original work carried out by me and I give assurance
that no attempt of plagiarism has been made.lt contains no material that is previously
published or written, except where reference has been made. I understand that in the
event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

Signature of Student
Date:

Place:

Endorsed by
Dr. Zunnun Narmawala

(Signature of Guide)

v

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Dr. Zun-
nun Narmawala, Associate Professor, Computer Engineering Department, Institute
of Technology, Nirma University, Ahmedabad for his valuable guidance and continual
encouragement throughout this work. The appreciation and continual support he has
imparted has been a great motivation to me in reaching a higher goal. His guidance has
triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sharada Valiveti , Hon’ble Head of
Computer Engineering/ Information Technology Department (INS) | Institute of Tech-
nology, Nirma University, Ahmedabad for her kind support and providing basic infras-

tructure and healthy research environment.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar , Hon’ble Head of
Computer Engineering Department, Institute of Technology, Nirma University, Ahmed-
abad for her kind support and providing basic infrastructure and healthy research envi-

ronment.

I would also thank the Institution, all faculty members of Computer Engineering
Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

Taslim Agwan

17MCEIO1

Abstract

The project aims to provide security against cross-site request forgery attack in CRM
(customer relationship management). CRM system manages huge customer data. Cus-
tomer data needs to be protected from the OWASP security risks. Which includes cross-
site request forgery. This is a type of attack where unapproved actions are performed
using a legitimate login session that the web application trusts. The current approach is
using XSRF tokens to prevent CSRF attack in GWT application. PMD tool is used to
analyze the use of vulnerable GWT APIs. CSRF Guard is used to defend against CSRF
attack on JAVA platform. This module implements the CSRF guard configurations for
Oracle JET framework in CRM. CSRF token injection approach is introduced.

vi

Abbreviations

CRM
CSRF / XSRF
POS

HTTP

URL

XSS

GWT

HTTP
HTML

JSON

XML

OJET

Customer Relationship Management.
Cross Site Request Forgery.
Point Of Sale.

Hyper Text Transfer Proeocol
Uniform Resource Locator.
Cross Site Scripting.

Google Web Toolkit.

Hyper Text Transfer Proeocol
Hyper Text Markup Language
JavaScript Object Notation
Extensible Markup Language

Oracle JavaScript Extension Toolkit

vil

Contents

Certificate

Statement of Originality

Acknowledgements

Abstract

Abbreviations

List of Figures

1

Introduction
1.1 OVerview o
1.2 Objective

Literature Survey
2.1 Survey on the mechanism behind CSRF attack
2.2 Survey on Existing CSRF defense Techniques

CSRF Prevention approach in GWT (Google Web Toolkit)

3.1 Google Web Toolkit
3.1.1 GWT ..
3.1.2 Current Approach

Scanning the GWT code for vulnerabilities

4.1 GWT vulnerable APIs

4.2 Scannig the GWT code

43 GWTRPCecalls.
4.3.1 Fuzzing GWT RPCecalls
4.3.2 Enumerating GWT RPCocalls

4.4 JAVA code scanning using Fortify 0.

Using CSRF Guard in Oracle JET framework

5.1 OJET framework

5.2 How CSRF Guard works

5.3 Limitations of CSRF Guard

5.4 CSRF token injection approach
54.1 DOM manipulation
54.2 JSP taglibraryo

iii

v

vi

vil

6 Conclusion
6.1 Conclusion

Bibliography

X

List of Figures

1.1 Point of saleand CRM oL 2
2.1 CSRF Attack 4
2.2 POST request malicious code [1] o0 4
3.1 The XSRF token approach in GWT 7
4.1 GWT code scanning using PMD 10
4.2 New GWT rules o 12
4.3 GWT RPCecall stream 12
4.4 Fuzzing the GWT RPCcalls 13
4.5 Enumerating the GWT RPCecalls 14
4.6 Fortify process flowo 14
4.7 Fortify scanning results 15
5.1 How CSRF Guard works 17
5.2 CSRF token validation in CSRF Guard 18
5.3 CSRF token injection in CSRF Guard 19
54 CSRF Guard 20
5,5 CSRF Guard 21
5.6 CSRF Guard 22
5.7 CSRF Guard 22
5.8 Servlet properties 23
5.9 CSRFGuard.js properties 23
5.10 Dynamic JS generation flow 23
5.11 Exposed token name using JSP tag library 24
5.12 Exposed token values using JSP tag library 24

Chapter 1

Introduction

1.1 Overview

POS system is widely used in the retail industry in order to enhance sales and productiv-
ity. Figure 1.1 shows the integration between POS and CRM. There is a number of POS
systems integrated with a central customer data maintenance system like CRM systems.
CRM is a suite of integrated services designed to increment revenue and profitability
for retail enterprises. It collects customer details (transaction details, contact details)
from the POS system, in order to analyze customers purchase pattern and target high
potential customers. Hence prevention of data loss is needed.

This prevention module specifically targets CSRF attack prevention in CRM. CSRF
is an attack that ploys the victim’s browser to execute unauthorized commands in CRM
to which an associate is logged in. CSRF attack is performed using social engineering,
which tricks the authorized user into sending a fake request to a server. As a victim
is authorized while sending a forged request. It is hard to differentiate an authorized
request from a fake request.

Previously, in CRM, XSRF tokens were used to prevent such vulnerabilities. Exist-
ing prevention techniques are time-consuming and weak. These techniques need manual
handling to apply protection techniques into an existing CRM system. Minimal manual

efforts are needed in the new technique (CSRF guard).

CRM services

E-commerce

Y

Marketing Cloud Attribute services

Award serviced

Card management “ 3
— Customer services
Franchisee services \‘
POS

Registry services

L J

Loyalty Account services
Poslog services

Item services

Maobile Apps

Figure 1.1: Point of sale and CRM

1.2 Objective

To reduce Retail Industry loss.
To reduce the number of application layer attacks (CSRF attack).

To integrate the defense technique for new Oracle JET framework.

To overcome the inadequacies of XSRF tokens and other existing prevention tech-
niques.
To ease the risk of bypassing a new approach, that is introduced.

To reduce data loss and theft using a secure exchange of CSRF prevention.

Chapter 2

Literature Survey

2.1 Survey on the mechanism behind CSRF attack

Stateless protocol (HTTP) can not recognize whether all the requests belong to a par-
ticular user or not. Protocol use client-side cookies to maintain user-specific state. The
browser will automatically add this cookie information in HTTP header[!]. This is not
helpful when there is a huge data exchanging between client and server. To address this
issue sessions are used. The session ID is generated, in order to distinguish the legitimate
user. Manual or automatic URL rewriting is used to append session ID into URL. Here
session ID is used as absolute authentication token|[2].
Session mechanism can be exploited by the attackers. The session ID is equivalent to
the users original credentials. XSS exploit can be used to reveal the session ID. Attacker
misuses the fact that web applications cannot differentiate between session ID from an
authorized user ID and stolen session ID. An attacker can misuse authenticated users
session to perform fraud transactions, password change or any other illegal activity[!].
A typical GET request for a $500 bank transfer :
GET HTTP://bank.com/transfer.do?acct=PersonB&amount= $500 HTTP /1.1
A hacker can modify this request and make this transfer to his own account.
GET HTTP://bank.com/transfer.do?acct=Attacker A&amount=$500 HTTP /1.1
This malicious link can be embedded into any simple looking hyperlink or it can be
embedded into an image link also :
Read

more!

If a bank is only using POST requests, then malicious code snippet can be executed
using form tag, with automatic implementation of JavaScript functions :

Figure 2.1 and 2.2 demonstrate the CSRF attack mechanism using POST request.

Attacker Victim Bank

POST /login

usern - . .
W Session established

SessionlD=02k13jf

0 0K it
Hﬂp;1.1i956531 SAiD=02K13)

get-cookie:

<formname="badform” method="post" POST/transtr Cg[

action="http://fictitiousbank/transfer.cgi™> f

<inputtype="hidden” name="from’" r0m=35367021&t0
value="35387021"> Cookie-: -
<inputtype="hidden” name="to” value="48412334"> kle' SeSSJOn]D:OZklaj. Valid SessionID

<inputtype="hidden” name="amount” value="5000">

<inputtype="hidden” name="date" Transfers funds to attacker
value="05072010"> K

000!

- fforma Hﬂp!’llz

<script>document.badform.submiti)=/script=

L 4 \ 4 v

Figure 2.1: CSRF Attack

<body onload="document.forms[0].submit()" >
<form action="http://netbank.com/transfer.do” method="POS5T">
<input type="hidden" name="acct" value="AttackerA'/>
<input type="hidden" name="amount" value="$100"/>
<input type="submit" value="View my pictures!"/>
</form=>
</body>

Figure 2.2: POST request malicious code [1]

When user click on such malicious links, while he is logged into his bank account.

Then these scripts can be executed successfully using authenticated sessions.

2.2 Survey on Existing CSRF defense Techniques
1. Using POST requests :

Common CSRF prevention practice is to use POST request instead of GET request.
As this attack takes advantage of the default behavior of the HTML parser in the
victims browser, this approach is not enough. As discussed in the previous survey,
using JavaScript attacker can perform CSRF attacks even when POST requests are

used [3].

2. Captchas :

Adding captchas will force the user to interact with the browser (application) till
the last and final request. The web application can not include captchas to each

and every operation that is being performed. Thus, it is not an ideal solution[2].

3. Referer header check :

The HTTP referer header is a field that shows the location of the webpage that
linked to the source being requested. It is the address from where the request is
being originated. The legitimacy of the referer can be checked. The browser can
maintain white-list of accepted referer headers. But sending this referer header
can result in leaking the sensitive information to unauthorized parties. So, referer
headers can be empty. Which can make impossible to detect the CSRF attack.
An attacker can use browser specific settings to trigger CSRF exploit using empty

referer headers|].

4. Proxy based solution :

Separate module is included in the existing system with minimal attempt. Proxy is
placed at the server side, between the target application and web server [1]. Proxy
inspects and modifies the requests. Proxy modifies the response, in a way that
future requests will contain valid tokens. Take countermeasures when an invalid
token is encountered. Proxy associates the users session to the valid token and

maintains the token table.

Chapter 3

CSRF Prevention approach in GWT
(Google Web Toolkit)

3.1 Google Web Toolkit

3.1.1 GWT

Google Web Toolkit is used to create complicated JavaScript front-end web applications
in JAVA. GWT builds a web application by compiling Java code base into JavaScript
front end code. Vulnerability assessment on GW'T applications is not feasible because
interdependency between the Java code base and compiled JavaScript front end code is

tough to detect. Java source code can be analyzed to detect potential vulnerabilities.

3.1.2 Current Approach

XSRF tokens were used previously in GWT. These XSRF tokens are generated randomly
and are difficult to predict. An attacker can obtain important parameters by analyzing
or using other exploits and can forge the request. Adding XSRF tokens is an effective
method.

NoForge is a server-side agent, which executes the token mechanism and rewrites the
URL [5]. Dynamically created links cannot be handled by this mechanism. Two-level
token defense mechanism can also be used, to harden the security. The first level token
is used for base security and for higher security second level token is used. Transactions
requests only proceed further if they contain the correct token.

Correct CSRF token does not mean that sent data is trustable. But it means that it

Request

Request
contains
ession ID 3

Session
D exists
in token
Table %

pass

request
Generate token, contains
add token table i

entry, pass

Disable FPazs

Figure 3.1: The XSRF token approach in GWT

was the users intention to send the data. Token Table is maintained [3.1].

1. Every session ID is associated with a certain token number.

2. Token is checked for every request. If a request has token, the corresponding session
ID is checked in the token table. If a request contains valid token, then request is

declared as valid.

3. Proper token is attached along with the response. Classes used for vulnerability

protection :

e Com.google.gwt.safehtml.shared :
Creates safe and encoded HTML content

e SimpliSafeHtmlrenderer :

Safey renders HTML code

e XsrfProtectedService

Chapter 4

Scanning the GWT code for

vulnerabilities

4.1

GWT vulnerable APIs

. Text and HTML

This classes exposes HasHTML and SetHTML methods, which can inject malicious

JavaScript code when it is called with untrusted data[0].

. URLs

Anchor and HyperLink uses setHref methods and accepts the URL. which is not
trustworthy if URL is not encoded[0].

HTTP Request and cookies

RequestBuilder class allows direct changes in request header and URLs. Response
class allows accessing response headers. Cookies class grants access to browser
cookies on the client machine. Data should not be manipulated using Getters and

setters used for cookies [0].

Server communication

RemoteServiceServlet and AsyncCallback classes are used to process the request
and send the response to the matching client. This also uses XsrfProtectedService

and XsrfProtectedServiceServlet classes to protect the application against CSRF[(].

Dynamic scripts

RemoteServiceServlet and AsyncCallback classes are used to process the request
and send the response to the matching client. This also uses XsrfProtectedService

and XsrfProtectedServiceServlet classes to protect the application against CSRF[0].

6. Parsing

JSONParser and XMLParser accepts the data in JSON or XML formats. This data

not be malicious|(].

4.2 Scannig the GWT code

To check instances of vulnerable APIs analysis is needed. Instead of checking it manually,
the static analysis tool was used. Fortify is one of the tools used to check the vulnerability
in the code. But this tool can only scan java code JSP script. And this did not work in
GWT [6]. FindBugs and PMD tools were used to analyze the GWT code. These tools
do not contain default rules for analysis, but custom rules can be written. PMD runs the
analysis on parsed Java code base.

Custom PMD rules can be created to analyze the use of vulnerable APIs. These rules
are created according to the listed APIs in the previous section. These rules were used to
check the use of vulnerable APIs. Potential vulnerabilities are counted per line of code.

Figure 4.1 shows the PMD tool processing for GWT code scanning.

Create Group Delete Group @ Create Query Delete Query G | Plugins \ PMD Queries -

--[J|@ CodeQualityRegression (12 gueres) ~ Artive #Items Code Queries and Rules
1 gbjgct Orl’ented Des.|gn (& g = . 123 All Pmd Violations
-] & Design (¥ gueries) o o
--[¥] 8 Architecture and Layering (& guenes) ® Maost prioritary Pmd violations
El" Plugins (29 gueries) 1 ® Most Classes violating Pmd rules
: 1 . 30 Most Methods violating Pmd rules
[JB! Most Project violating Pmd rules
- 07 Maost Recurrent Pmd viclations
{8 BestPractices [i. guenes) i .
.71 [AP1 Breaking Changes| (5 queries) ® = Popular Methods violating Pmd rules
--{¥] @@ [Code Diff Summary| (25 4) 9 Popular Classes vialating Pmd rules
Dﬁ-‘de;:;: (B Pmd Violation Famillies with Mast violations
--{] 1 [Dead Code
LT Vieihilhe G2 aoaciac | 7

Figure 4.1: GWT code scanning using PMD

Existing PMD Rules :

o GWTSetTextRule

— looks for setText and hasText methods. Texts (from an untrusted source)

should be encoded.

10

GWTUrlRule

— All the URLSs provided by user should be URIEncoded. Looks for setHref and
setURL methods.

GWTRequestBuilderRule

— This rule counts the use of RequestBuilder, JsonRequestBuilder and XML-
HttpRequest.

GWTCookieRule

— Looks for setCookie and getCookie methods.

o GWTRemoteServiceRule

— Check if remote services are XSRF protected or not. Checks for the usage of

RemoteService and XsrfProtectedService,

GWTScriptRule

— Checks the usage of scriptElement and scriptInjector.

GWTXMLParseRule

— Parsing malicious XML can be risky. This rule counts the use of XML-

Parser.parse.

New PMD Rules created :

e Figure 4.2 shows the new GWT rules created.

11

Rules Working of the rule

GWTERawHtmlRule Check the usage of raw HTML classes. Ex.
HTML setHiml and InnerHTML setHtml.

GWTInnerHtmlRule Setting the wmmerHTML of an element should be
used less.

GWTWindowRule Check Windowopen, Window Location assign
and window Location.replace [direct access to the
browser window].

GWTISONParserRule Parsing untrusted JSON can be dangerous. Check
the usage JSOMNParser parse method.

4.3 GWT RPC calls

GWT is used to create AJAX enable Java web applications. GW'T allows developers
to assemble the components in Java and Then the JAVA code is compiled into advance
JavaScript for browsers to run.

GWT RPC calls allow sending JAVA custom objects (data) from front end JavaScript
code to JAVA back end server code. Whenever the AJAX call is made, serialized JAVA
objects are streamed.

RPC call is sent as HTTP POST request from the browser. The serialized stream is

Figure 4.2: New GW'T rules

in plain text and separated by vertical lines as shown in Figure 4.3.

510|7|http://localho=st:8080/crmdev/
| 29F4ER]1 240F157 64501 24606F01F46Fa0 |

com.test.client.GetTasks | Server|java.lang.String|

miiii—— L |2 2 [4[2]|3]3]6]7]

Figure 4.3: GWT RPC call stream

This stream is made of three different parts :

e Header

e String table

12

e Payload

4.3.1 Fuzzing GWT RPC calls

In GWT RPC calls, there are payload values that can be manipulated and are fuzzable.
GWT Parse tool is used to automate the process of extracting the values within an RPC
call payload that can actually be changed and are vulnerable. Security bugs are identified
in this application using this tool.

GWT front end code is too obfuscated to read, so it is tough to recognize all the
fuzzable values passed in the request by only viewing the JS code.

This is a command line tool which creates new payload with all fuzzable value iden-
tified. As shown in Figure 4.4 default output will replace fuzzable string value with %s

and numeric value with %d.

Original Payload Fuzzed payload
5|0]12|http #1127 0.0.1:8080/crmdev/|4ET583E4BE D25F 58DDD5F 1A1D6755224] 5/0[12|http://127.0.0 1:8080/crmdev/|4E 7583E4BED25F 58DDD5F 1A1D6755224
com.gwitest.client notesService|geiNotes|java.util ArayLis/3821976829| GWTP: com gwitest. client notesService|getNotes|java util ArrayList/38621976829]
com.gwttest.client. CustomObj/427743781|com.gwitest client. Person/2847577871| Ee com.gwitest client CustomObj/427743781|com.gwitest.client Person/2847577871]
PersonNameljava.lang.Integer/3438268394| CustomObjParam1|CustomObjParam2 %sljava.lang.Integer/3438268394|%s|%s|%s| 112|3]4/2|516|5(2/7|

%d|8I7|%d|8I6]9|%d|10[11]12(10)

CustomObjParam3|1]2|3]4]2|5]6]5(2[7]200|8[7]200|8]619/200(10111[12]10]

Figure 4.4: Fuzzing the GWT RPC calls

4.3.2 Enumerating GWT RPC calls

Enumeration is used to reduce the complexities exposed by GWT code. GW'T obfuscates
the client-side JavaScript code. Which makes difficult to enumerate the GWT RPC calls.

GWT Enum tool is used to list non-functioning vulnerable methods that may not
normally be seen usually. GWT JavaScript code is obfuscated to enumerate all exposed
method calls.

The tool results are shown in Figure 4.5.

4.4 JAVA code scanning using Fortify

Fortify is used to recognize and handle security vulnerabilities in software to reduce
security risks. Fortify SCA is a static analysis tool processes the code in a similar manner
to code compiler.

Fortify uses an intermediate tool that runs on the code base and converts into compiled

code that is optimized for the fortify-analysis.

13

" " = H

Enumerated Methods

S W R e

5 NotesService_Proxy.getStoryFields(com.threerings.msoy.crmdev. gwt.notesService$key /2584087011)
G NotesService_Proxy.trackPageRequest(I,java.lang.String/2004816611)
7 NotesService_Proxy.trackStoryPosted(com.threerings.msoy ARGGGGEGGG_GG_GGG_—_GGGEEE Y, oo . lang. String/2004016611, java. lan

8 WebMemberService Proxy.
9 WebMemberservice_Proxy.
1@ WebMemberservice_Proxy.
11 WebMemberService_Proxy.
12 WebMemberService_Proxy.
13 WebMemberService_Proxy.

escapeTheme()

getInvitation(java.lang.String/2004816611,7)

getMemberCard(I)

isThemeManager(I)

notelewVisitor(com.threerings.msoy.data.all.VisiterInfo/3279131818, java.lang.String/2084216611,7)

trackTestAction(java.lang.5tring/28@4816611,java.lang.5tring/2864016611,com.threerings.msoy.data.all.VvisitorInfo/3275

14 WebUserService Proxy.getApp(I)
15 WebUserService Proxy.getConnectConfig()

16 WebUserservice

Proxy.loadLaunchConfig(I)

17 WebUserservice_Proxy.validateSession(java.lang.5tring/28@4816611,java.lang.string/2e84816611,T,T)

m b

Figure 4.5: Enumerating the GWT RPC calls

This tool also uses Fortify customized Rules to analyze the code base, if there are

any security violations of secure coding practices. An audit workbench is available for

viewing the results and analyzing the issues.

Figure 4.6 describes working of fortify tool and Figure 4.7. shows the scanned results.

JAVA and
SaL

Fortify intermediate Fortify global | .| Findings and
model B analysis ™ reports

= Build tool and CLI .

{}

Fortify rules and
customized rules

Figure 4.6: Fortify process flow

14

F Static Analysis Results 5% =0

395 41||_|o|.o|...|.435|

Critical (395)

1 [£3 Command Injection - [0/ 3]

i+ [Cross-Site Scripting: Persistent - [0/ 77]

1 ([Cross-Site Scripting: Reflected - [0 /109]

i+ 1 Dynamic Code Evaluation: Code Injection - [0/ 2]
1] Open Redirect- [0/ 3]

1 [Password Management: Hardcoded Password - [0 /19]
1 (] Path Manipulation - [0 /6]

1> [Privacy Vielation - [0 / 148]

1 [SQL Injection - [4 / 25]

1> [¥ML External Entity Injection - [0 /1]

I [®Path Injection - [0 /2]

< [0] v
|p“‘ |Advanced...
F Analysis Evidence 23 = 08

J] Challenge2Sc... J] CSRFjava SR | Project Summary ¥ 7 = 0

Summary | Certification | Runtime Analysis | Build Information | Analysis Information

Project Location: E\java.fpr Scanned: 611 files, 13,909 LOC (Executable)
Build ID: A Total Issues: 136
A Total LOC: 23,430

Warnings: 1 occurred during scan Certification: Results Certification Valid

All Issues by Folder
High (41) H

F lssueSum.. F IssueDeta.. F Recomme.. F History F Diagram F Screenshots F Filters 32 = O

Quick View Filters: (appliedin the order shown) | Show Matching Issues
4 F Visibility Filters Disable Filter

“F Ifimpact is not in range [2.5, 5.0] Then hide issue

“F TIf likelihood is not in range (1.0, 5.0] Then hide issue Edit Filter ...

4 [Folder Filters
B If [fortify priority erder] contains critical Then set folder to Critical
20 If [fortify priority erder] contains high Then set folder to High
[T If [fortify priority erder] contains medium Then set folder to Medium
20 If [fortify priority erder] contains low Then set folder to Low

Delete Filter

Copy Filter

Figure 4.7: Fortify scanning results

15

Chapter 5

Using CSRF Guard in Oracle JET

framework

5.1 OJET framework

JET framework is a collection of JavaScript libraries, which is used to develop client-side
web applications. In this new framework, the CSRF guard is used in order to prevent

CSRF attack.

5.2 How CSRF Guard works

CSRF guard has a unique design pattern to prevent attacks. A developer can customize
the token injection strategy. CSRF guard can be configured based on the requirement,
without compromising the usability of the application.

Figure 5.1 describes how CSRF Guard works to prevent CSRF attack. CSRF Guard
analyze the incoming requests to protect the web resources. It injects a token to specified
resources into the HTML source code and then verifies this token, when user request for
the particular resource or HTML page. This validation is done on the server side.

Figure 5.2 shows the token validation process. CSRF Guard checks the page specific
token in each request. If page specific token is no yet generated, then it verifies the request
by checking per-session tokens and creates page specific tokens. This page specific token
will be checked for all subsequent requests.

Figure 5.3 gives the details of token injection process. CSRF Guard initiate the

random token and adds it to the web pages that needs a protection.

16

client e~

Token
verification
Process

process dat verify token

A

\W4

(}f:fggg;L,r” fesponse
\ .

response

Browser
Web
application

Insert token

process data
Token
Injection
process

\

/AR

Figure 5.1: How CSRF Guard works

Figure 5.4 and 5.5 demonstrate that CSRF Guard attaches the CSRF token to every
single web resources. Figure 5.6 and Figure 5.7 shows that CSRF Guard throws access

denied message when unauthorized user access the resources.

5.3 Limitations of CSRF Guard

e CSRF token can be stolen By hijacking the session, man in the middle attack or

XSS attack.

e Relevant pages for token injection needs to be analyzed. File configurations need

to be set manually. But introducing scripts into pages needs manual work.

e Dynamically generated requests are the requests created by scripts while running
on the web browsers. That cannot be accessed before running it. CSRF Guard fails

to add a token to this type of dynamically created forms.

5.4 CSRF token injection approach

CSRF Guard injects the CSRF preention tokens within the HTML pages generated by

the application. In an earlier version of CSRF Guard, token injection process was time-

17

client server

HTTP
connection
request

protected resource Session

started

| Cnec [~ Token)
session token ‘\

comrect

Responze Process Requps Web application
Walid
x sessiony W‘/C/mﬁc‘/
Response Chec}t(ier_ / Process request
Response page token
{CSRF Attempt)
Invalid
w foken
Redirect

Figure 5.2: CSRF token validation in CSRF Guard

consuming, as file configuration needs to be set manually. and Relevant pages for token
injection also needs to be analyzed.

CSRF Guard 3 has a better approach to inject CSRF tokens dynamically. JavaScript
DOM manipulation JSP tag library strategies are used as CSRF token injection strategies.

This technique requires minimum efforts to inject tokens.

5.4.1 DOM manipulation

This technique dynamically plants the CSRF tokens into the DOM that is currently
loaded in the browser. Dynamic JS file needs to be added. This solution requires a
servlet mapping and adds a JS HTML tags in all the pages sending requests to access
protected web resources.

DOM manipulation will not work for a specific application context. JavaScript file
used for token injection is created by the servlet file.

Owasp.CsrfGuard.jar this JAR file needs to be added in the application’s classpath.

18

client server

HTTP
connection
reguest

protected data First

request
L 4
: Mew token
Eije:ésl_lc?;g Loading page
Browser Web application
Token Check
query w Titlal/s//
m InEEEtDizismn /
Token stored in set
Token stored : ;
in the session SNl session 1D
A 4 X385
Insert per-
page
foken
Session
hijacking

Figure 5.3: CSRF token injection in CSRF Guard

servlet class needs to be declared in the web.xml file. Figure 5.8 displays the servlet
properties set. Figure 5.9 displays properties set on dynamically generated JS file.
Initialization params supported by the JS servlet :

e source-file

location of JS template file that needs to be used to automate the process.

e domain-strict

Boolean value deciding whether or not the JavaScript code should add the pre-
vention tokens in links that point to the same domain from which the HTML is
originated.

e referer-pattern

Requesting the servlet access pages needs to match this particular referer-pattern.

e cache-control

caching the dynamic JS file reduces network traffic and increase performance.

19

|_ Previous JL Mext JL Action J

_[Request T Response]

J Raw I Params T Headers T Hex 1

GET

A
Host: soll00Z1l us. oracle.com "
User—-Agent: Mozilla/s5.0 (Windows NT 10.0; WOWE4; rw:-&£0.0) Gecko/20100101 Firefox/E0.0
Acocept: application/json, text/javascript, */*; g=0.01
Accept-Lancuage: en-US,en;qg=0.5
Accept-Encoding: gzip, deflate
Le ferer : A
¥-Begquested-With: *XMLHctpReguest, OWASP CERFGuard Project
OWASP_CERFTOEKEN: CGTH-SU-U-FEEM-458F--WZPZ-FHTZ-VIER-HST7
Coolkie: ORASSO_AUTH HINT=wl.O0~Z0Ll8Ll1Z&1323210;
0RA_UCM_INFO=3~EBEC4D1999662259E0S0ES0ASETF 7AF E -
5_ fid=5CF3CT79A413BEAAE-3061BAB1IZ3EESLI04; ga=GALl.Z2. 1748528035, 15359847054;
GDT7TIDDSJISERGTA4H=AeVizsKjgf0dio0-0re)jllKees jCExuegMHI08-a0_ bbDanlallbO0! 18511759121
Connection: close
-
¥
L._’J u‘] u I_::J Type & search term 0 matches

Figure 5.4: CSRF Guard

e inject-into-forms

Boolean value describing weather token needs to be added as hidden fields to the

HTML.

e inject-into-attributes

determines weather JS should inject token to src or href attributes or not.

All requests originated from the HTML page needs to ensure that accurate CSRF
token is submitted for the user’s current session. Adding the dynamic JavaScript code
does not protect the web page. Rather, the script ensures the CSRF token is transferred
within all web requests created by the current page.

This JavaScript code will start an event handler with window.on load. Once the event
is triggered, the code will analyze every HTML tag within the DOM looking for either
form tags and or tags having href or src attributes.

According to defined params, forms are dynamically updated to include the CSRF-
Guard tokens. Figure 5.10 explains the flow for token injection in CSRFGuard.

20

W Burp Suite Community Edition v1.7.36 - Temporary Project — X

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | intruder | Repeater TSequenter Decoder | Comparer T Extender TPrnJennptmns TUser options | Aleris
Intercept | HTTP history TWebSncket.smsmry Options

| Filter: Hiding CSS, image and general binary content ‘ 2
7| Host | Methog | URL. | Params | Edied | Status | Length | MMEtype | Extension | Tide | comment |ssL |
856 hitpiidetectportal firefox.com GET Isuccess bt text ot ia
855 htpuiidetectportal firefox.com GET Isuccess bt text ot
854 hitpiidetectportal firefox.com GET Isuccess bt text ot
853 htpiidetectportal firefox.com GET Isuccess text ot
852 - v 200 2422 script
851 - v 200 816 script
850 - v 200 953 script
849 - v 200 2095 script 5
D R ATt i i ann ran - -

Request | Response
Raw | Params | Headers | Hex

POST

a
Host: r
User-Agent: Mozilla/S 0 (Windows NT 10.0; WOWS4; rw:80.0) Gecks/20100101 Firefox/g0.0
Aceepr: 4/*
Aceepr-Language: en-US,en;q=0_§
Accept-Encoding: gzip, deflate
Referer:
Content-Type: text/x-gue-rpe; charset=ucf-g
X-GWT-Permutacion: CD53EE1EISABA0793EACDADZDOBAEEEL
X-GUT-Module-Base: =
Content-Length: 259
Coskie: DRA: TH_HINT=v1 0~20181126137310; 0BA_UCH_INF0=3-EBEC4D19S9567259E050EE0ADETFTAR - s_fi4=57F3C794413BEAAS-3061BABIO3EBS104;
ga=GAL 2. 1748528039 1539847054; GDTTIDDSISERGT4H=TqI1ILQTIGATICTY O £o3 FZWUQ £0rkni xxCIVIYe 0 XvLSH20Zpk | 1AS11T9121
Connection: elose
71z1E = 3FACT1CT400SD1AFODFA1ST5EFARAS | con. goagle. qwe user client rpe. XsrfToken/4754043109 | ACFBESECRDSFSELLST4FIEIBFCOIGEDE |con dry._ osx .
uiclient. gensral.rpe
v
L2 =] L2 2] [Tope 2 search term 0 matches

236 PM
11/30/2018 D

A D

Figure 5.5: CSRF Guard

5.4.2 JSP tag library

This library allows using of JSP tags that give access to the token name, the token value
and the token name-value pair. To use this library, JAR should be added to the classpath.
Using this library, the Developer can have control over token injection process and can
place the token at an appropriate location. This token details can be obtained using this

library.
e Display token name [Figure 5.11 |

e Display token value [token value should be used with URI attribute. The value of
the URI attribute is the URI for which the token value will be posted | [Figure
5.12 |

e Display token name and value pair.

Generated form with the CSRF token : This JSP library implements a pattern
to generate HTML forms with the CSRF prevention token automatically embedded in
it. This strategy makes it easy to integrate the CSRF token, for unique token per page
model. proper validation and encoding need to be performed.

Generated link with the CSRF token : This library generates the HT'ML anchor

tags with the CSRF prevention token automatically added as a query string parameter.

21

W Burp Suite Community Edition v1.7.36 - Temporary Project

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | intruder | Repeater TSequenter Decoder | Comparer T Extender TPrnJennpﬂnns TUser options | Aleris

1.
e

o

Request

Raw | Params | Headers | Hex Raw | Headers | Hex

GET 4 HITP/L.1 404 Not Found]
Host: r Server: mginx/1 15 2 r
User-Agent: Mozilla/5.0 (Windews NT 10.0; WOWE4; rw:£0.0) Gecko/20100101 Firefox/E0.0 Date: Fri, 30 Nov 2018 09:12:05 GHT
Accept: application/jsen, Eext/javascript, */%; q=0.01 Content-Type: application/json;charset=utf-8
Accept-Language: en-US Content-Length: 71
Accept-Encoding: gzip, deflate Connection: closs
Referer: ¥-Frame-Options: SAMEORIGIN
: OWASP Froject Cache-Control: no-cache, no-store, must-revalidate
OWASP_CSRFTOKEN: SUSS-LASG-YWNT-OU1R5-QERT-GAT4-HLAX-Z5BJ Pragma: no-cache
Cookie: ORAS AUTH_HINT=vl.0~Z018112E132310; Expires: Thu, IS5 Nov 2018 05:12:05 GMT
ORA_UCH_INFC EBEC4D1SS96E2I55ENSOEEOABETFTAF H-ORACLE-DMS-RID: 0:1
s_fid=. ‘A413BEAAE-30E1BABIZ3EBS104; _ga=GAL.Z. 28039.1539847054; H-Content-Type-Options: nosniff
CD7TIDDSISERGT4H=CKEI4iusQnC -3 TTyEM0Xxr conSikugtHEW-! ’X}{DMLE'-‘KPAT—IH!lBSll'-‘.‘l:l.I X-0PACLE-DMS-ECID: 008UxslQxNb8lzH_UtH7ic0004ui0noooou
Connection: close X-Powered-By: Servlet/3.1 JSP/2.2
X-Frame-Options: SAMEORIGIN
{"el 1. it RSE: T :"ACCESS_DENIED"}
L L
v v
EEEER omenes | (2] I

Done

55 bytes | 306 milis

Figure 5.6: CSRF Guard

Reguest | Response

Raw | Params | Headers | Hex

GET 4

Host : A,

User-Agent: INozilla/5.0 (Windows NT 10.0; WOWE4; rv:&0.0) Gecko/IZ0100101 Firefox/E0.0
Accept: text/html,application/xhtml+xml, applicacion/xml;gq=0_9,*/%;q=0_8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: ORAS

|_AUTH _HINT=vl1.0~IZ0181126132310; ORA_UCHM INFO=3~EBEC4D1S995E6Z255E0S0ESOARETFTAFE

T

5_fid=5ZF3CT79A413BEARE-30E1EAB1Z3EES5104; _ga=GAl.Z.1748928039.15339847054
Connection: close

Upgrade-Insecure-Requests: L

Figure 5.7: CSRF Guard

al

The tag accepts attribute name-value pairs and simply adds them to the page. As

an outcome, you are free to use the same attribute values made available in a standard

HTML anchor and the prevention tokens will be added in the link.

22

<servliet>
<servlet-namer*JavaScriptServlet</servlet-—name>
<gservlet-class>org.owasp.csrfguard.servliet.JavaScriptServlet</zervlet—class>
<init-param®>
<param-namersource-file</param-name>
<param-value>WEB-INF/Owasp.CsrfGuard.js</param-value>
</init-param>
<init-param>
<param-namerinject-into-forms</param-name>
<param-valus>NNR /param-valus>
</init-param>
<init-param>
<param-name>inject-into-attributes</param-—name>
<param-value>#ll</param-value>
</init-param>
<init-param>
<param-namerdomain-strict</param-name>
<param-value> S/ param—value>
</init-param>
<init-param>
<param-name>referer—-pattern</param—name>
<param-value>.*localhost.*</param-valus>
</init-param>
</servlet>

Figure 5.8: Servlet properties

org.owasp.csrfguard.unprotected.Htm=*.htm

org.owasp.carfguard.unprotected.Html=*.html

org.owasp.csrfguard.unprotected.Js=%.]s

org.owasp.csrfguard.unprotected.Css=".csas

favg format files may load from JRAF framework, so marking them as unprotected
org.owasp.csrfguard.unprotected.Svg=*.svg

org.owasp.csrfguard.unprotected. Png="*.png

org.owasp.csrfguard.unprotected. Jpg=*.jpg

org.owasp.csrfguard.unprotected. Jpeg=*.jpeg

org.owasp.csrfguard.unprotected.Gif=*.gif

org.owasp.csriguard.unprotected. Erro = ——
org.owasp.cerfguard.unprotected. Inde xS
org.owasp.csrfguard.unprotected. relate i
org.owasp.csrfguard.unprotected.Relate Ul —
org.owasp.csrfguard.unprotected.Relate_UIL_ Al 1= —
org.owasp.csrfquard.unprotected. 1 oot ——
org.owasp.csrfguard.unprotected. authenticate—SEENEEGEGEEGGGEGGEGEGEE
org.owasp.czrfguard.unprotected. JavaScriptServlet

Figure 5.9: CSRFGuard.js properties

. JS file is generated) . .

Map Javascript in order to inject the Set 1. Add path for jar file Forms are dynamically

Serviet class tokens. CSRFGuard 2. Add path for js file updated to include the
i CSRFGuard token

properties

Process will iterate every time
window is loaded.

Figure 5.10: Dynamic JS generation flow

23

<form name="testl"” action="protect.html">»

<input type="text" name="text" value="text"/»

<input type="submit"” name="submit” value="submit"/>

<input type="hidden"” name="<csrf:tokenname/>" value="<csrf:tokenvalue uri="protect.html"/>"/>
</form>»

Figure 5.11: Exposed token name using JSP tag library

<form name="testl" action="protect.html"»

<input type="text" name="text" value="text"/>»

<input type="submit"™ name="submit” value="submit"/>

<input type="hidden" name="<csrf:tokenname/>" value="<csrf:tokenvalue/>" />
</form>

Figure 5.12: Exposed token values using JSP tag library

24

Chapter 6

Conclusion

6.1 Conclusion

This project includes source code scanning and CSRF attack prevention approach. Ex-
isting PMD rules were used to scan the GWT code initially. New PMD rules are added
to scan the front end GWT code thoroughly. New fortify rules are created to scan the
back end JAVA code. XSRF token approach was used to reduce the CSRF attack risk in
GWT application. CSRFGuard is used to prevent CSRF attack in a new JET applica-
tion. A new technique for token injection is introduced using JSP tag library and DOM

manipulation to overcome the limitations of manual CSRF token injection.

25

Bibliography

1]

N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request forgery at-

tacks,” in 2006 Securecomm and Workshops, pp. 1-10, Aug 2006.

E. D. Alvarez, B. D. Correa, and I. F. Arango, “An analysis of xss, csrf and sql
injection in colombian software and web site development,” in 2016 8th Euro American

Conference on Telematics and Information Systems (EATIS), pp. 1-5, April 2016.

J. You and F. Guo, “Improved csrfguard for csrf attacks defense on java ee platform,”
in 2014 9th International Conference on Computer Science Education, pp. 1115-1120,
Aug 2014.

B. Chen, P. Zavarsky, R. Ruhl, and D. Lindskog, “A study of the effectiveness of csrf
guard,” in 2011 IEEE Third International Conference on Privacy, Security, Risk and
Trust and 2011 IEEE Third International Conference on Social Computing, pp. 1269—
1272, Oct 2011.

T. Alexenko, M. Jenne, S. D. Roy, and W. Zeng, “Cross-site request forgery: At-
tack and defense,” in 2010 7th IEEE Consumer Communications and Networking
Conference, pp. 1-2, Jan 2010.

D. Larson, J. Liu, and Y. Zuo, “Analyzing the vulnerabilities in gwt code and ap-

)

plications,’

pp. 525-530, Dec 2014.

in 2014 Second International Symposium on Computing and Networking,

26

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Overview
	Objective

	Literature Survey
	Survey on the mechanism behind CSRF attack
	Survey on Existing CSRF defense Techniques

	CSRF Prevention approach in GWT (Google Web Toolkit)
	Google Web Toolkit
	GWT
	Current Approach

	Scanning the GWT code for vulnerabilities
	GWT vulnerable APIs
	Scannig the GWT code
	GWT RPC calls
	Fuzzing GWT RPC calls
	Enumerating GWT RPC calls

	JAVA code scanning using Fortify

	Using CSRF Guard in Oracle JET framework
	OJET framework
	How CSRF Guard works
	Limitations of CSRF Guard
	CSRF token injection approach
	DOM manipulation
	JSP tag library

	Conclusion
	Conclusion

	Bibliography

