
i

Design, Development and Testing of IoT

Gateway

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Communication Engineering)

By

Kartik Chavda

(17MECC17)

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2019

ii

 Design, Development and Testing of IoT

Gateway

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Communication Engineering)

By
Kartik Chavda

(17MECC17)

Under the guidance of

External Project Guide:

Mr. Sandip Patel,

Product Manager,

Masibus Automation

Pvt. Ltd.,

Gandhinagar

Internal Project Guide:

Dr. Sachin Gajjar,

Associate Professor

EC Engineering,

Institute of Technology,

Nirma University,

Ahmedabad

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2019

iii

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Technology in

Communication Engineering at Nirma University and Physical Research Laboratory and

has not been submitted elsewhere for a degree.

2. Due acknowledgment has been made in the text to all other material used.

Kartik Chavda

 17MECC17

iv

Disclaimer

“The content of this thesis does not represent the technology, opinions, beliefs, or

positions of Masibus Automation Pvt. Ltd. its employees, vendors, customers, or

associates”.

v

Certificate

This is to certify that the Major Project entitled “Design, Development and Testing of

IOT Gateway” submitted by Kartik Chavda (17MECC17), towards the partial

fulfillment of the requirements for the degree of Masters of Technology in Communication

Engineering, Nirma University, Ahmedabad is the record of work carried out by him under

my supervision and guidance. In my opinion, the submitted work has reached a level

required for being accepted for examination. The results embodied in this Project, to the

best of our knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Date: Place: Ahmedabad

Dr. Sachin Gajjar

Internal Guide,

Associate Professor in EC Engineering,

Institute of Technology,

Nirma University, Ahmedabad

Dr. Y. N. Trivedi

Program coordinator,

Professor in EC Engineering,

Institute of Technology,

Nirma University, Ahmedabad

Dr. D. K. Kothari

Professor and Head,

EC Engineering Department,

Institute of Technology,

Nirma University, Ahmedabad

Dr. Alka Mahajan

Director,

Institute of Technology,

Nirma University, Ahmedabad

vi

Certificate

This is to certify that the Major Project entitled “Design, Development and Testing of IOT

Gateway” submitted by Kartik Chavda (17MECC17), towards the partial fulfillment of the

requirements for the degree of Masters of Technology in Communication Engineering, Nirma

University, Ahmedabad is the record of work carried out by him under my supervision and

guidance. In our opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this Project, to the best of our knowledge, haven’t

been submitted to any other university or institution for award of any degree or diploma.

Date: Place: Gandhinagar

 Mr. Sandip Patel

 Product Manager,

Masibus Automation Pvt. Ltd

vii

Acknowledgement

I would like to express my gratitude and sincere thanks to Dr. Y.N. Trivedi, PG

Coordinator of M.Tech Communication and Dr. Sachin Gajjar for guide-lines during the

review process.

I take this opportunity to express my profound gratitude and deep regards to Dr.

Sachin Gajjar, guide of my internship project for his exemplary guidance, monitoring and

constant encouragement.

I would also like to thank Mr. Sandip Patel, external guide of my internship project

from Masibus Automation Pvt. Ltd., for guidance, monitoring and encouragement

regarding the project.

- Kartik Chavda

 17MECC17

viii

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgement vii

Abstract x

List of Tables xi

List of Figures xii

Abbreviation xiv

1. Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 2

1.3 Approach . 2

1.4 Scope of Work . 3

1.5 Organization of Thesis . 3

2. Literature Survey . 4

2.1 IOT Gateway . 4

2.2 Application Layer Protocol . 5

 2.2.1 Hypertext Transfer Protocol (HTTP) 5

 2.2.2 Message Queuing Telemetry Transport (MQTT) 6

 2.2.3 Constrained Application Protocol (CoAP) 7

2.3 Comparison of HTTP, MQTT, CoAP . 9

2.4 Comparison of NodeMCU and ESP8266 . 10

2.5 Programming Platform . 11

 2.5.1 Arduino IDE . 11

 2.5.2 Mongoose OS 11

2.6 Cloud Platform . 12

 2.6.1 Google Firebase . 12

 2.6.2 Amazon Web Services (AWS) . 12

2.7 Mobile Application . 14

 2.7.1 Blynk . 14

 2.7.2 IoT MQTT Dashboard . 14

2.8 MQTTLens Workstation for IoT . 14

2.9 Eclipse MQTT Broker and Client . 14

 2.9.1 Mosquitto Server . 14

 2.9.2 Paho Mqtt client . 15

ix

3. Hardware Design . 16

3.1 Hardware Block Diagram . 16

3.2 IoT development hardware with ESP8266 . 21

3.3 Temperature monitoring system . 22

4. Software Design . 25

4.1 Arduino IDE for ESP8266 . 25

 4.1.1 Install ESP8266 Board support package 25

 4.1.2 ESP8266 and Blynk App communication 25

 4.1.3 ESP8266 remote access from Google Firebase 26

4.2 ESP8266 and AWS IoT communication . 29

4.3 Raspberry Pi remote access with IoT MQTT dashboard 33

4.4 Raspberry Pi remote access with MQTT Lens Workstation 36

4.5 Raspberry Pi remote access with AWS IoT 38

5. Testing /Results . 40

5.1 IoT Development Hardware . 40

 5.1.1 IoT development hardware with ESP8266 40

 5.1.2 Raspberry Pi IoT development kit . 41

5.2 Monitor and control on android Mobile Application 42

 5.2.1 Mobile App with MIT APP Inventor 42

 5.2.2 Blynk Mobile Application . 43

 5.2.3 Remote access with MQTT Dashboard 44

5.3 Monitor and control on Firebase Cloud . 44

 5.3.1 DHT Sensor Real time database . 44

 5.3.2 IoT development hardware data on firebase 45

5.4 Monitor and control on AWS IoT . 46

 5.4.1 ESP8266 remotely access through AWS IOT 46

 5.4.2 DHT 11 data share on AWS IoT . 47

 5.4.3 Raspberry pi remotely access through AWS IoT 47

5.5 Monitor and control through Workstation . 48

 5.5.1 Remote access with MQTTLens 48

6. Conclusion and Future Scope . 49

 Bibliography . 50

x

Abstract

Internet of Things (IoT) is the most advancing technology worldwide. IoT is the technology

which can connect and control physical devices remotely with the help of Internet. IoT

architectural layers are sensing layer, networking layer, data processing layer and

application layer. The architecture components of IoT are sensors, actuators, gateways,

processing units (microcontroller or microprocessors) and cloud server. IoT gateway can

be used to provide Internet connectivity to any non-IP devices. IoT gateway are connection

points between devices connected using personal area network standards and the

Internet.In this project, a gateway for IoT is designed, developed and tested. A hardware

setup consisting of IoT gateway, end-device consisting of sensor for environmental

monitoring and an end-device consisting of actuator is developed. The sensor data is send

to cloud services like Google firebase, Amazon Web Services (AWS) for monitoring on

mobile and on workstation. The gateway is developed using ESP8266 having Wi-Fi

connectivity and Raspberry Pi development boards having both Bluetooth and Wi-Fi

connectivity. Message Queuing Telemetry Transport (MQTT) is a lightweight, low-

bandwidth, high-latency application layer protocol. MQTT protocol uses the main two

things, Broker and Client. Eclipse mosquito is open MQTT broker and Eclipse paho is an

MQTT client that can be used on a number of hardware platforms. The operating system

used for the ESP8266 gateway is Mongoose Operating System (OS) and for Raspberry Pi

(RPi) based gateway Raspbian stretch is used for the gateway developed. AWS and Google

firebase are used as the cloud service for the gateway that is designed in the project. Device

gateways share their data to the various clouds like Google firebase, Amazon AWS IoT.

Mobile Application like Blynk and MQTT dashboard is used for mobile and workstation

based remote control and monitoring of the devices. A customized Mobile application is

also developed with MIT App Inventor for device control and monitoring. MQTT lens used

is used for monitoring and control of devices through workstation. The entire hardware

setup is successfully tested.

xi

List of Tables

2.1 Comparison of HTTP, MQTT and CoAP . 9

2.2 Comparison of NodeMCU and Arduino UNO. 10

3.1 NodeMCU Board Specification . 18

3.2 Relay connection with NodeMCU . 19

3.3 DHT Sensor Connection with NodeMCU . 20

xii

List of Figures

1.1 IoT Architecture. 1

2.1 IoT Gateway Architecture. . . . 4

2.2 HTTP Protocol. 6

2.3 MQTT Protocol . 7

2.4 CoAP protocol Architecture . 8

3.1 Hardware Block diagram . 16

3.2 ESP8266 12E Wi-Fi Development Board . 17

3.3 Relay Circuit . 19

3.4 DHT11 Sensor . 20

3.5 IoT development hardware with ESP8266 . 21

3.6 Raspberry Pi 3b+ Board. 23

3.7 Temperature monitoring system with Raspberry Pi. 24

4.1 Create project on firebase . 26

4.2 Security rule for Cloud Firebase. 27

4.3 Firebase Host URL. 28

4.4 Firebase database Secret key. 28

4.5 AWS CLI configuration. 29

4.6 Mongoose OS git clone. 30

4.7 Navigate the mongoose OS directory. 30

4.8 Mongoose OS build the firmware for ESP8266 31

4.9 Mongoose OS flash on ESP8266 . 31

 4.10 NodeMCU Wi-Fi configuration. 32

 4.11 Mongoose OS upload certificates on AWS IoT 32

 4.12 Create connection on IoT MQTT dashboard . 34

 4.13 IoT MQTT dashboard components. 35

 4.14 Publish message with IoT MQTT Dashboard. 35

 4.15 Create connection in MQTTLens . 37

 4.16 Publish message with MQTTLens . 37

xiii

 4.17 DHT 11 publish data on AWS IoT . 39

5.1 IoT development hardware with ESP8266 . 40

5.2 Raspberry Pi IoT development kit. .. 41

5.3 Mobile App MIT APP Inventor. 42

5.4 Blynk App Dashboard. . . . 43

5.5 Remote access with IoT MQTT Dashboard. 44

5.6 DHT 11 data on Firebase. 44

5.7 IoT development hardware data on firebase. 45

5.8 ESP8266 GPIO remotely access by AWS IoT 46

5.9 Temperature data publish on AWS IoT . 47

 5.10 Raspberry Pi GPIO remote access by AWS IoT 47

 5.11 Remote access with MQTTLens . 48

xiv

Abbreviation

M2M . …… . . Machine to Machine

IOT …….Internet of Things

MQTT Message Queuing Telemetry Transport

HTTP… . Hypertext Transfer Protocol

CoAP Constrained Application Protocol

GPIO General Purpose Input Output
 .
SPI Serial Peripheral Interface

I2C . Inter-Integrated Circuit

CPU . Central Processing Unit

RAM . Random Access Memory

I2S Inter-IC Sound

RISC . Reduced Instruction Set Computer

UART Universal Asynchronous Receiver/Transmitter

AWS Amazon Web Service

TLS Transport Layer Security

SSL Secure Sockets Layer

TCP . Transmission Control Protocol

UDP . User Datagram Protocol

IDE. Integrated development environment

Rpi Raspberry Pi

 OS Operating System

xv

DHT Digital Humidity and Temperature

CLI Command Line Interface

DTLSDatagram Transport Layer Security

IAM Identity and Access Management

USBUniversal Serial Bus

1

Chapter 1

Introduction

International Telecommunication Union defines IoT as “A global infrastructure for

the information society, enabling advanced services by interconnecting (physical and

virtual) things based on existing and evolving, interoperable information and

communication technologies”. IoT systems have smart devices that are used to collect,

control or send data from embedded processors, sensors and communication hardware

environment. IoT devices collect the data by connecting to the IoT gateway and send them

to the cloud to store, control, send and remotely access from mobile or workstation kind of

devices.

Fig. 1.1 IoT Architecture [1]

2

Fig 1.1 Shows Architecture of IoT, IoT Nodes are the microcontrollers which

collect the data from sensor and can control the devices using relay like devices. It has

capabilities like sufficient processing power and memory. IoT gateway is bridge between

Internet and Local area network through which the nodes are connected. These nodes are

connected using standards like WiFi, Zigbee, Bluetooth, Cellular, Lora WAN, Ethernet,

etc. HTTP, MQTT, CoAP, and AMQP are the application layer protocols used in the IoT.

1.1 Motivation

IoT is the most growing and upcoming Technology. IoT main architectural

components are things, gateways, mobile devices, the cloud and the enterprise. Gateway is

most crucial part for the IoT Technology. For the smart devices design very cost-effective

gateway which can connect home appliance to the internet and remotely access them from

anywhere in the world.

1.2 Problem Statement

The thesis aims to design, develop and test an IoT gateway that is cost effective,

consumes less power and is easy to use.

1.3 Approach

Main Approach for this project is to use ESP8266 and RPi used as device gateway

to connect the various devices to internal network at one end and Internet on the other.

Mosquitto MQTT broker and Paho MQTT client are used for communication with light

weight MQTT protocol. ESP8266 communicates with Server or Broker through internet

with MQTT protocol. Google Firebase and Amazon Web Service are used as cloud broker

which have many computing capability to monitor and access the ESP8266 data over the

internet. To remotely monitor and control the nodes through the mobile phone a mobile

application is developed using MIT app Inventor 2 and Google firebase.

3

1.4 Scope of Work

IoT architectural layers are sensing layer, networking layer, data processing layer

and application layer. The architecture components of IoT are sensors, actuators, gateways,

processing units (microcontroller or microprocessors) and cloud server. DHT11 sensor and

Relays are part of sensing layer.ESP8266, Rpi and Wi-Fi routers are part of networking

layer.Google firebase and AWS IoT are part of data processing layer. Blynk, MQTT

Dashboard, Mobile Application are part of Application Layer.

1.5 Organization of the thesis

The rest of the thesis is organized as follows:

Chapter 2 describes the Literature review.

Chapter 3 describes the hardware design of the gateway.

Chapter 4 describes about Software Design.

Chapter 5 presents the Testing and Results.

4

Chapter 2

Literature Survey

2.1 IoT Gateway

IoT gateway [2], bridging communication between sensor domain and network

domain, is the most important components of the IoT. Fig 2.1 gives details of IoT gateway

[2] in the IoT infrastructure. The IoT gateway acts as Proxy for the sensing domain and

network domain towards the ‘thing’ that are connected to it.

Fig. 2.1 IoT Gateway Architecture [2]

IoT gateways are quite different from application to application for various

requirements. The common features are multiple interface, protocol conversion and

Manageability. Smart things are connect to IoT gateway through various kind of

technologies (Wi-Fi, Bluetooth, Zigbee, etc.), also IoT gateway has kind of choices to

connect to the public network (2G/3G, LTE, LAN, DSL, PSTN, etc.). There are two

situation that an IoT gateway needs execution protocol conversion. One is communication

occurs between different sensing domain protocols (e.g. Wi-Fi and Zigbee), the other is

that communication occurs between sensing domain protocol and network domain protocol

5

(e.g. between Zigbee and LTE). IoT gateway itself needs managed IoT servers, like

subscription management, authority management, status management and mobility

management, etc. Smart things attached to an IoT gateway also needs to be managed by

IoT gateway. IoT gateway may have many abilities to identify, control, diagnose configure

and maintain the smart things.

2.2 Application Layer Protocols

2.2.1 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) [3] was founded in 1990 for the data

communication purpose of the World Wide Application. It was published as standard

protocol in 1997 by IETF and W3F. HTTP is an application-level protocol for widely used

for access multimedia content on web pages. HTTP is a request-respond TCP/IP protocol.

HTTP is mostly used for transfer multimedia files. Port 80 is the default HTTP Port. It is

mostly used to access web pages on the Internet. HTTP protocol is developed for transfer

multimedia contents so message header size is maximum. Once data transfer overs, client

needs to initiate a request for new connection.

.

Fig. 2.2. HTTP Protocol

Fig. 2.2 shows the request-response model of HTTP protocol. Web browser

(clients) initiate a request to connects to specific web pages. The web pages are managed

by the Servers. Server grant access to the client and send the acknowledgement. Once

connection successfully setup then data transfers.

6

Once data transfer is over connection is terminate each new request are treated as

new connection for the client and server are new to each other. Any type of the data can be

sent through HTTP can be handled data content by the client and server by each session.

So, client and browser (server) cannot retain information data at different request for web

pages.

2.2.2 Message Queuing Telemetry Transport Protocol (MQTT)

 Message Queue Telemetry Transport (MQTT) [3] is the messaging protocol. It was

developed by Andy Stanford-Clark of IBM and Arlen Nipper of Arcom in 1999. MQTT

protocol is developed for machine to machine communication. Afterwards this protocol is

popular for the messaging application. It is the most popular protocol used in IoT. MQTT

Brokers and MQTT clients are the two main parts for this Protocol. MQTT Brokers are

known as Servers used for store the data and manage clients. MQTT clients can publish or

subscribe the data from MQTT Broker.

Fig. 2.3 MQTT Protocol

Fig. 2.3 shows MQTT Protocol consists of three main components: subscriber,

publisher and broker. The publisher generates the data and transmits the information to

subscribers through the broker. The broker ensures security by cross-checking the

authorization of publishers and subscribers.

7

MQTT Protocol provides efficient information-routing functions to small, cheap,

low-memory and power-consuming devices in vulnerable and low bandwidth based

networks. MQTT protocols features are: It is light-weight message queuing and transport

protocol. It is suitable for Asynchronous communication model with messages (events), It

has Low overhead (2 bytes header) for low network bandwidth applications, It works on

Publish / Subscribe (Pub Sub) model and knowledge of information publisher and

subscriber through topics.

Advantages of MQTT protocol are: It is Simple protocol and aimed at low quality.

It is low power and low footprint implementations (e.g. WSN – Wireless sensor Networks).

It runs on connection-oriented transport (TCP). To be used in conjunction with 6LoWPAN

(TCP header compression).

2.2.3 Constrained Application Protocol (CoAP)

 CoAP derived by the IETF Constrained RESTful Environments (CoRE) working

group. CoAP[3] is an Internet application protocol for constrained devices. It is designed

to be used between devices on the same constrained network and general nodes on the

Internet. This protocol is especially designed for IoT systems based on HTTP protocols.

Fig. 2.4 CoAP protocol Architecture[3]

8

Fig. 2.4 shows, CoAP protocol architecture. CoAP makes use of the UDP protocol

for lightweight implementation. It also makes use of RESTful architecture, which is very

similar to the HTTP protocol. It is used within mobiles and social network based

applications and eliminates uncertainty by using the HTTP get, post,

put and delete methods. Apart from communicating IoT data, CoAP has been developed

along with DTLS for the secure exchange of messages. It uses DTLS for the secure transfer

of data in the transport layer.

 CoAP protocol [3] Features are CoAP uses UDP, some of the TCP functions are

reproduced in CoAP. For example, CoAP distinguishes between confirmable (requiring an

acknowledgement) and non-confirmable messages. Requests and responses are exchanged

asynchronously over CoAP messages. All the headers, methods and status codes are binary

encoded, which reduces the protocol overhead. Unlike HTTP, the ability to cache CoAP

responses does not depend on the request method, but the Response Code. CoAP fully

addresses the need for an extremely lightweight protocol and the ability for a permanent

connection.

9

2.3 Comparison HTTP, MQTT and CoAP

Table 2.1 Comparison of HTTP, MQTT and CoAP [3]

Details MQTT CoAP HTTP

Year 1999 2010 1997

Architecture Client/Broker Client/Server or

Client/Broker

Client/Server

Header Size 2 Byte 4 Byte Undefined

Methods Connect, Disconnect,

Publish, Subscribe,

Unsubscribe, Close

Get, Post, Put, Delete Get, Post, Head, Put,

Patch, Options,

Connect, Delete

Quality of Service QoS 0, QoS 1, QoS 2

At most once,

At least-once

Not Available

Message Size Small Small Large

Cache and Proxy Partial Yes Yes

Transport Protocol TCP UDP, SCTP TCP

Security TLS/SSL DTLS, IPsec TLS/SSL

Licensing Open Source Open Source Free

Default Port 1883/8883(TLS/SSL) 5683 (UDP) /5684

(DLTS)

80 / 443 (TLS/SSL)

Standards OASIS IETF W3C and IETF

Organizational Support IBM, Facebook,

Eurotech, Cisco, Red

Hat, AWS

Cisco,

Contiki, Enka,

IoTivity

Global Web Protocol

Standard

Official site https://www.w3.org/

Protocols/

mqtt.org/ https://coap.technolo

gy/

10

 Table 2.1 shows the comparison of Application layer protocols MQTT, HTTP and

CoAP. HTTP is widely used for the multimedia data transfer. MQTT is the most popular

protocol used for IoT because it has lowest message header size and light protocol.

 2.4 Comparison of NodeMCU and ESP8266

Table 2.2 Comparison of NodeMCU and Arduino UNO

Parameters ESP8266 12 E(NodeMCU) Arduino UNO

CPU 32 Bit 8 Bit

Microcontroller LX 106 Atmega 328P

Processor Clock 80MHz to 160MHz 16 MHz

RAM 36 KB 8 KB

Storage 16 MB 32 KB

Built in Wi-Fi IEEE 802.11 b/g/n N.A.

ADC Pin 1 (10 bit Resolution) 6

GPIO Pins 12 14

Operating Voltage 3 – 3.6V 7 – 12 V

Table 2.2 shows, comparison of NodeMCU and Arduino IDE board. Both board

supports programming with Arduino IDE. NodeMCU board supports programming with

ESPlore IDE, mongoose OS and NodeMCU Firmware. NodeMCU board have Wi-Fi chip

available, high processor speed and more RAM space available compared to Arduino

UNO.

11

2.5 Programming Platform:

2.5.1 Arduino IDE

 The Arduino integrated development environment (IDE) is a cross-platform

application support mac os, windows and Linux environment that is written in the

programming language Java. Arduino[4] Sketch is used to write and upload programs to

Arduino board. ESP8266 community provides board support packages for esp8266 board.

In this Package some examples like Wi-Fi client, Wi-Fi Access points, http server, DNS

Server, etc are available. In this project different libraryies viz. Arduino JSON, Blynk and

firebase, etc. are used for communication with various clouds.

2.5.2 Mongoose OS:

 Mongoose OS for microcontrollers was developed by Cesanta, a Dublin-based

embedded software company and Advanced APN Technology Partner[5]. Mongoose OS

supports many microcontrollers like STMicro: STM32 F4, L4, F7, TI: CC3200, CC3220,

Espressif: ESP32, ESP8266. Mongoose OS is an open source operating system for

microcontrollers that emphasizes cloud connectivity. Mongoose OS[5] Features are

Reliable Over-The-Air update, secure device provisioning, and Remote management. It

supports a simple networking interface for controlling devices remotely over RESTful,

Web socket, or MQTT protocols. It Supports Cloud integrations like AWS IoT, Google

IoT, Microsoft Azure, IBM Watson, Private MQTT / REST back end. It can be

programmed using C and JavaScript. Mongoose OS provides proxy gateways for ESP8266

to connect to AWS IoT Platform.

12

2.6 Cloud Platform

2.6.1 Google Firebase:

 Google Firebase[6] is a mobile and web app development platform that provides

developers with set of tools and services for developing high-quality apps. Firebase provide

different Services like Real time Database, Authentication, Test Lab, Crashlytics, Cloud

Functions, Firestore, Cloud Storage, Performance Monitoring, Crash Reporting, Hosting,

Firebase Analytics, Invites, Cloud Messaging, Predictions, AdMob, Dynamic Links,

AdWords, Remote Configuration.

 In this project, the Real time Database features is used, The Firebase[6] Real time

Database is a cloud-hosted service. SQL database does not allow to store and sync between

the users in real-time. The Real time Database is a JSON object that the developers can

manage in real-time. With a single API, the Firebase database provides the app with both

the current value of the data and any updates to that data. Real time syncing makes it easy

for users to access their data from any device, on the web as well as mobile. Real time

Database also helps users to collaborate with each another. Another benefit of Real time

Database is that it ships with mobile and web SDKs, allowing one to build apps without

the need for servers. When users go offline, the Real time Database SDKs use local cache

on the device to serve and store changes. When the device comes online, the local data is

automatically synchronized. The Real time Database can also be integrated with Firebase

Authentication to provide a simple and intuitive authentication process.

2.6.2 Amazon Web Services (AWS)

AWS provides a wide variety of services which are cloud-based, such as compute,

analytics, IoT, security, and storage. In this project, the following services of AWS[7] are

being used. Amazon Web Services[7] offers a broad set of global cloud-based services

including compute, storage, databases, analytics, networking, mobile, developer tools,

management tools, IoT, security and enterprise applications. These services help to build

up projects that are faster, lower in IT costs, and scalable. AWS is trusted universally to

wide variety of workloads including: web and mobile applications, game development,

data processing and warehousing, storage, archive, and many others. AWS is Easy to use,

13

Flexible, Cost-Effective, And Reliable, Scalable provides high-performance and is secure.

In this project, the following services[7] of AWS are being used.

1. AWS CLI:

The AWS Command Line Interface (CLI)[7] is a unified tool to manage the AWS

services. One tool is to be configured, to control multiple AWS services from the command

line and automate them through scripts.

2. AWS IAM:

AWS Identity and Access Management (IAM)[7] is a web service for securely

controlling access to AWS services. With IAM, it is possible to centrally manage users,

security credentials such as access keys, and permissions that control which AWS

resources users and applications can access

3. AWS IoT:

AWS IoT is a managed cloud platform that lets connected devices easily and

securely interact with cloud applications and other devices. AWS IoT[7]can support

billions of devices and trillions of messages, and can process and route those messages to

AWS endpoints and to other devices reliably and securely. With AWS IoT, applications

can keep track of and communicate with all devices, all the time, even when they aren’t

connected. AWS IoT makes it easy to use AWS services like AWS Lambda, Amazon

Kinesis, Amazon S3, Amazon Machine Learning, and Amazon DynamoDB to build

Internet of Things (IoT) applications that gather, process, analyze and act on data generated

by connected devices, without having to manage any infrastructure.

14

2.7 Mobile Application for IoT:

2.7.1 Blynk

Blynk[9] is a mobile application that can control hardware remotely, it can display

sensor data, it can store data, visualize it. Blynk can be run on Platform with iOS and

Android operating system to control Arduino, Raspberry Pi, NodeMCU and several other

boards over the Internet.

2.7.2 IoT MQTT Dashboard:

 IoT MQTT Dashboard is an application to manage IoT projects using MQTT

protocol. The Application features are: It supports many connections, SSL connection. It

specify the data unit and display numeric values in a real-time updating chart.

2.8 MQTTLens Workstation for IoT:

 MQTTLens is the Google Chrome application extension available on Google

chrome store. MQTTLens workstation connects with MQTT broker and is able to subscribe

and publish to MQTT topics. The following details are required for the MQTT connection

with MQTTLens are: MQTT broker, ports and topic for publish and subscribe operations.

2.9 Eclipse MQTT Broker and Client:

2.9.1 Mosquitto Server:

Eclipse Mosquitto[11] is an open source (EPL/EDL licensed) message broker that

implements the MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto[11] is lightweight

and is suitable for use on all devices from low power single board computers to full servers.

The MQTT protocol provides a lightweight method of carrying out messaging

using a publish/subscribe model. This makes it suitable for Internet of Things messaging

such as with low power sensors or mobile devices such as phones, embedded computers or

microcontrollers.

15

The Mosquitto project also provides a C library for implementing MQTT clients,

and the mosquitto_pub and mosquitto_sub command line MQTT clients. Mosquitto is part

of the Eclipse Foundation and is part of IoT.eclipse.org project.

2.9.2 Paho Mqtt client:

The Eclipse Paho project[12] provides open-source client implementations of

MQTT and MQTT-SN messaging protocols. It is new, existing, and emerging applications

for the Internet of Things(IoT). Paho provides an open-source client implementations of

MQTT publish/subscribe for use on embedded platforms, along with corresponding server

support. Paho Python Client provides a client class with support for MQTT v3.1, v3.1.1 on

Python 2.7 or 3.4. It also provides client class which enable applications to connect to an

MQTT broker to publish messages, and to subscribe to topics and receive published

messages.

Paho client python library[12] is used to communicate many public broker like

Eclipse, Hivemq and secure IoT platform like Amazon AWS IoT. Paho provides client

library which is supported by many micro-controllers for IoT application.

16

Chapter 3

Hardware Design

3.1 Hardware Block Diagram

 In the project, IoT development board is design, the aim is to connect and monitoring

home appliance to the internet. IoT gateway performs an important role for remote

accessing and monitoring the appliance from any place. The system block diagram is

shown as Fig3.1.

Fig. 3.1 Hardware Block diagram

Fig. 3.1 shows the Hardware block diagram for the purposed system. The system

requires some hardware components are listed as below. The hardware components

used are relays, DHT11 Sensor, NodeMCU, router and Smart Phone. The block diagram

represents the relay and DHT11 Sensor are connected to NodeMCU GPIO. Google

firebase library is installed on Arduino IDE for NodeMCU programming. The Wi-Fi

and firebase client class used for create connection between ESP8266 and firebase.

17

DHT11 publish the humidity and temperature data and relay remotely control with the

Google firebase. The Mobile Application developed with MIT APP Inventor 2 to get or

send data to Google firebase.

The following list of hardware components are used in the project:

1. ESP8266 12E Wi-Fi Development Kit:

Fig. 3.2 ESP8266 12E Wi-Fi Development Board

The ESP8266 Wi-Fi development board features are, it is Breadboard Friendly,

operates on 3.3 power supply. It has built-in wireless connectivity capabilities. It has built-

in PCB antenna on the ESP-12E chip. It is capable of PWM, I2C, SPI, UART, 1-wire, 1

analog pin. It uses CP2102 USB serial communication interface module. It is compatible

with Arduino C programming language in Arduino IDE.

18

Table 3.1 NodeMCU Board Specification

Parameters Specifications

Microcontroller ESP8266 12-E

Memory Tensilla 32 bit

Processor Clock 80MHz – 160 MHz

RAM 36 KB

Storage 16 MB

Wireless Standard IEEE 802.11 b/g/n

Operating Voltage 3.3 V

Operating Current 12 - 200 mA

Operating Temperature -40 to 125℃

GPIO Capability UART, I2C, PWM, GPIO,

1 ADC

Serial Transmission 110 - 921600 bps, TCP

Client 5

Table 3.1 shows NodeMCU Board Specifications. The NodeMCU Board has Wi-Fi chip

with ESP8266 CPU. It can operate on 5V USB power Supply. It can programming with

Arduino IDE and mongoose OS.

19

2. Relay

Fig. 3.3 Relay Circuit

Relays are known as electromagnetic switches. Relays can receive signal ESP8266

Wi-Fi development board and performs switching operation on the other side. The main

operation of this device is to make or break contact with the help of a signal without any

human involvement in order to switch it ON or OFF. It is mainly used to control a high

power circuit using a low power signal. The relay is interfaced to ESP8266 board digital

GPIO pins to remote control 220 V A.C. power supply appliances.

Table 3.2 Relay connection with NodeMCU

Relay NodeMCU Board Pin

1 D1

2 D2

3 D4

4 D5

The Table3.2 shows the connection between the NodeMCU and Relays.

20

3. DHT11 Temperature and Humidity sensor

Fig. 3.4 DHT11 Sensor

Fig 3.4 shows DHT 11 Sensor, DHT11 temperature & Humidity Sensor is a

temperature & humidity sensor with a calibrated digital signal output. The sensor includes

a resistive type humidity measurement component and NTC (Negative Temperature

Coefficient) temperature component. It offers excellent quality, fast response, anti-

interference ability and cost effectiveness. It can measure temperature from 0-50 °C with

an accuracy of ±2°C and relative humidity ranging from 20-90% with an accuracy of ±5%.

The sensor provides fully calibrated digital outputs for the humidity and temperature

measurements

Table 3.3 DHT Sensor Connection with NodeMCU

DHT 11 Pin NodeMCU Pins

VCC 3.3V

Signal D4

GND GND

The Table 3.3 NodeMCU and DHT 11 Sensor connection. The D4 pin is the digital input

and ouput GPIO is connected with the signal pin of DHT 11.

21

4. Router:

Wireless routers are the hardware devices used to connect to Internet. A wireless router,

also called a Wi-Fi router, combines the networking functions of a wireless access point

and a router.

NodeMCU board can use Wi-Fi client library to connect Wi-Fi router by entering

correct Wi-Fi SSID and password details. Router provides the Internet connectivity to the

NodeMCU for IoT applications.

5. Smart Phone with Android OS:

In an IoT based application Smart phones with the Android OS can be used to monitor

and control the devices from any place and at any time. The mobile applications are

installed on the Android smart phone for IoT operations.

3.2 IoT Development Hardware

Fig. 3.5 IoT development Hardware with NodeMCU

Fig. 3.5 shows hardware design of prototype consists various components such as

resistor, LED, wires, button, BC547 transistor, 1N4007 diode, potentiometer, terminals

block and NodeMCU. The design of automated system should be simple and easy to

22

control the home appliances remotely and also be monitored their status at the same time

with wireless access gateways. The Android app designed here is use App with graphical

buttons to control the home appliances by the means of wireless media. The code is

uploaded with required libraries to the NodeMCU using the Arduino IDE. Once the

ESP8266 finds the matched combination of that particular SSID and Password, it connects

to the access point and becomes part of the WLAN.

The hardware part of the developed system is programmed using Arduino IDE and

the android application is developed using MIT APP Inventor. The hardware components

have been programmed to communicate directly with the Firebase database. All the values

of the sensors and the current status of each and every electrical appliance is continuously

updated on the Firebase database using pre-configured Wi-Fi device.

3.3 Temperature monitoring system

Raspberry Pi 3b+ Board:

Raspberry Pi 3B+ have following specifications [13]:

 It has SoC: Broadcom BCM2837B0 quad-core A53 (ARMv8) 64-bit @ 1.4GHz, GPU:

Broadcom Video core-IV, RAM: 1GB LPDDR2 SDRAM, Networking: Gigabit

Ethernet(via USB channel), 2.4GHz and 5GHz 802.11b/g/n/ac Wi-Fi, Bluetooth:

Bluetooth 4.2, Bluetooth Low Energy (BLE), Storage: Micro-SD, GPIO: 40-pin GPIO

header, populated, Ports: HDMI, 3.5mm analogue audio-video jack, 4x USB 2.0, Ethernet,

Camera Serial Interface (CSI), Display Serial Interface (DSI)

23

Fig. 3.6 Raspberry Pi 3b+ Board

Fig. 3.6 shows the raspberry pi 3b+ board. The board have Broadcom CPU, 40 pin

GPIO header, Wi-Fi and Ethernet connectivity and HDMI and 4 USB port. This board can

be work as computer. This board is operate on 5V DC and require 2.5 A USB power supply.

CSI port available for camera interface and HDMI port available for video output.

24

Fig. 3.7 Temperature monitoring system with Raspberry Pi

Fig. 3.7 shows hardware design of prototype consists various components such as

DHT11 Sensor, Breadboard, wires, LED, resistor and Raspberry Pi 3b. The design of

automated system should be simple and easy to control the home appliances remotely and

also be monitored their status at the same time with wireless access gateways. The code is

uploaded with paho MQTT libraries to the Raspberry Pi using the Python IDE. The IoT

MQTT dashboard is use App with graphical buttons to remote control the LED.

25

Chapter 4

Software Design

4.1 Arduino IDE for ESP8266:-

The Arduino IDE software does not include ESP8266 Board support package. So, following steps

are required to install the ESP8266 packages in the Arduino IDE.

4.1.1 Install ESP8266 Board support package [4]:

Open Arduino IDE and File < Preferences < Addition Boards URL Manager and copy

below URL on the empty box:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Tool < Boards < Board Mangers and select esp8266 community and Install

Tool < Boards < NodeMCU 1.0 and Select appropriate COM Port

Now open File < Examples < Examples for NodeMCU 1.0 and set Wi-Fi router SSID and

Password and run the code. Now ESP8266 connects to the router and it has internet

connectivity.

4.1.2 ESP8266 and Blynk App communication:

Step 1: Download the Blynk APP library zip file from github and install in Arduino IDE:

Sketch < Include Library < Add Blynk App.zip library.

Step2: Download Blynk APP from Application store.

Step3: Now create a Blynk account, and login to the account.

Step4: Create new project by enter the project Name and the choose NodeMCU device.

Step5: Now Auth Token is send to the register email id.

Step6: Now Open File < Examples <Blynk < Boards_WiFi < NodeMCU

26

 Step7: Enter the WiFi SSID, Password, Auth Key and upload code on NodeMCU Board.

 Step8: Now Open Blynk App and add the widgets from widget box to control NodeMCU

remotely from Blynk App.

4.1.3 ESP8266 remote access from Google Firebase:

Step 1: Download the Firebase library zip file from github and install in Arduino IDE:

Sketch < Include Library < Add Google Firebase .zip library.

Step 2: Open the Google firebase console with following URL:

 https://firebase.google.com/

Step 3: Now create a Google firebase account, and login to the account.

Step 4: Now select on get started to access firebase console page.

Step 5. Now click on the Add project and enter the project name, location and

accept the agreement to create the project.

Fig. 4.1 Create project on firebase

https://firebase.google.com/

27

 Fig. 4.1 shows, the information require like project name, location for create new

project in the Google firebase platform.

 Step6. Now click on continue and select database < Create database and enable lock mode

Fig. 4.2 Security rule for Cloud Firebase

 Fig. 4.2 shows, Lock and Test mode security rule in Google Firebase.

Step7. Now select Real time database and copy the project URL:

28

Fig. 4.3 Firebase Host URL

Fig. 4.3 shows the Google firebase project URL. The URL is pasted as host address

in NodeMCU programming in Arduino IDE. The default port is 1883.

Step8. Now select on setting symbol < open project setting < select service account <

Database secret and copy the secret key.

Fig. 4.4 Firebase database Secret key

29

The Fig. 4.4 shows the database secret is hidden on this page. It can show by

click on show button. The database secret key is the work as security key to

authenticate the user. The firebase host address and secret key is require for connecting

with ESP8266.

 Step9. Open Arduino IDE < Examples < FirebaseArduino <FirebaseDemo_ESP8266

and paste the URL and secret key, enter Wi-Fi ssid and password and upload the code

on NodeMCU board. NodeMCU and firebase is connected to each other.

4.2 ESP8266 and AWS IoT communication:

The following steps are required for mongoose OS[8] to communication between

ESP8266 and AWS IoT.

Prerequisites:

Python environment require for AWS CLI installation.

AWS CLI configuration in command Line:

Fig. 4.5 AWS CLI configuration

30

Fig. 4.5 shows the AWS CLI configuration steps, it requires access key id, secret

access key, AWS region name and output format. Access key id and secret access key are

getting from the AWS IAM user.

Step 1 – Mongoose OS [8] git repository

A git clone of the Mongoose OS repository from GitHub, which can obtain

with the git clone https://github.com/cesanta/mongoose-os command. Navigate to

the git repository in the shell.

Fig. 4.6 mongoose OS git clone

Fig4.6. shows the git clone of the mongoose OS downloaded. The mongoose OS

git clone some default setting and demo examples are available in C and Javascript.

Step2. Navigate to the c_mqtt firmware example directory: $ cd mongoose-

os/fw/examples/c_mqtt

31

Fig. 4.7 Navigate the mongoose OS directory

Fig. 4.7 show the steps for navigate the mongoose OS directory. The c_mqtt is the

demo code available to for the demonstration of c programming in mongoose OS.

Step3. Build the firmware: $ mos build --arch esp8266

Fig. 4.8 mongoose OS build the firmware for ESP8266

Fig. 4.8 shows the mongoose OS build the firmware for the ESP8266.

Step4. Flash the firmware: $ mos flash

Fig. 4.9 mongoose os flash on ESP8266

32

Fig. 4.9 shows the mongoose OS firmware is flash on the ESP8266 architecture.

When the firmware is flashed the ESP8266 reboot and booting code from firmware.

Step5. ESP8266 Wi-Fi Configuration: $ mos wifi WIFI_SSID WIFI_PASSWORD

Wi-Fi configure by replacing WIFI_SSID and WIFI_PASSWORD with the

appropriate values for the environment:

Fig. 4.10 NodeMCU Wi-Fi configuration

Fig. 4.10 shows the Wi-Fi configuration steps for the ESP8266 in the mongoose

OS. The Wi-Fi SSID and password is require to connect the Wi-Fi access point.

Step6. AWS IoT Setup: $ mos aws-IoT-setup --aws-region REGION--aws-IoT-policy

mos-default

Generate certificates, upload them to the NodeMCU board, and set up the MQTT

parameters by replacing REGION with the name of the region that use with AWS IoT:

Fig. 4.11 Mongoose OS upload certificates on AWS IoT

33

Fig. 4.11 shows the AWS IoT setup with the mongoose OS. Mongoose OS setup generates

default setup, device certificate, region and policy and upload on AWS IoT. ESP8266 and

AWS IoT is connection is setup successfully.

4.3 Raspberry Pi remote access with IoT MQTT dashboard:

 Free online broker used is broker.hivemq.com.

 Following are the steps to install paho MQTT Client on Raspberry Pi:

 Step1 Execute the following command to install python pip

 sudo apt-get install python-pip

 Step2 Execute the following command to install paho MQTT client library

sudo pip install paho-mqtt

 Step3 Execute the following command to install Rpi Gpio library:

sudo pip install RPi.GPIO

 Step4 Now open the subscribe.py script from paho-mqtt < site-packages and add host

address and port number and subscription topic.

34

 Step5 Open IoT MQTT dashboard Application and enter the client id, server and port details

Fig. 4.12 Create connection on IoT MQTT dashboard

 Fig. 4.12 shows the main page of IoT MQTT dashboard Application. The topic,

broker and port details can be fill here.

35

 Step6 Now select available component as per requirement.

Fig. 4.13 IoT MQTT dashboard components

 Fig. 4.13 shows the components available in the IoT MQTT dashboard Application.

The components are Text, Button, Switch, Time Picker, etc.

 Step7 Edit the details of topic and start publish the message:

Fig. 4.14 Publish message with IoT MQTT Dashboard

36

The Fig. 4.14 shows the on and off button switch to remote access Led connected

with raspberry pi

Step8. Now enter the same topic in subscribe.py script and run the script. The raspberry pi

subscribe the message from the IoT MQTT dashboard.

4.4 Raspberry Pi remote access with MQTT Lens Workstation:

Free online broker used here is: broker.hivemq.com

Following are the steps to install paho MQTT Client on Raspberry Pi:

Step1 Execute the following command to install python pip

sudo apt-get install python-pip

 Step2 Execute the following command to install paho MQTT client library

 sudo pip install paho-mqtt

 Step3 Execute the following command to install Rpi Gpio library:

 sudo pip install RPi.GPIO

 Step4 Now open the subscribe.py script from paho-mqtt < site-packages and add host

address and port number and the subscription topic.

37

 Step5 Open IoT MQTTLens Application and enter the client id, server and port details

Fig. 4.15 Create connection in MQTTLens

 Step6 Edit the details of topic and start publish the message:

Fig. 4.16 Publish message with MQTTLens

Fig. 4.16 shows the MQTTLens Web Application can publish and subscribe raspi/1 topic

from the broker.hivemq.com MQTT broker to remote access raspberry pi.

38

4.5 Raspberry Pi remote access with AWS IoT:

Following are the steps to install paho MQTT Client on Raspberry Pi:

 Step1 Execute the following command to install python pip

 sudo apt-get install python-pip

 Step2 Execute the following command to install paho MQTT client library

sudo pip install paho-mqtt

 Step3 Execute the following command to install Rpi Gpio library:

sudo pip install RPi.GPIO

 Step4 Execute the following command to install AWS IoT Python SDK and download AWS

IoT certificates and private key:

 sudo pip install AWSIoTPythonSDK

 Step5 Open the Aws_publish.py and Aws_subscribe.py script from AWS IoT python SDK

in raspberry pi.

 Step6 Add the AWS IoT endpoint and 8883 MQTT port number and TLS set class

 with the rootCA, private certificates and private key. Now connect the AWS IoT

 with AWS IoT end point , port number and the TLS class.

39

 Step7 Execute the Aws_publish.py python script with following command:

sudo python Aws_publish.py

Fig. 4.17 DHT 11 publish data on AWS IoT

The Fig. 4.17 shows the page of AWS IoT MQTT Test in AWS IoT. Temperature

topic is subscribe to get DHT11 sensor data on AWS IoT.

40

Chapter 5

Testing and Results

 5.1 IoT Development Hardware:

 5.1.1 IoT development hardware with NodeMCU:

Fig. 5.1 IoT development hardware with NodeMCU

Fig 5.1 shows the home automation development kit with NodeMCU. The relays

and sensor are connect are connected with the ESP8266. The Hardware kit is design with

button and led for digital input and output operations.

41

5.1.2 Raspberry Pi IoT development kit:

Fig. 5.2 Raspberry Pi IoT development kit

Fig. 5.2 shows the IoT development kit with the Raspberry Pi board. DHT 11 sensor

publish temperature and humidity data with the temperature and humidity topic. Led is

connected with raspberry pi GPIO pin 4 and subscribe the topic from the broker or mobile

app. This hardware is tested successfully with IoT MQTT dashboard, AWS IoT MQTT

client and MQTTLens.

42

5.2 Monitor and control on android Mobile Application:

 5.2.1 Mobile App with MIT APP Inventor

Fig. 5.3 Mobile App MIT APP Inventor

Fig. 5.3 shows the graphical user interface of the firebase automation mobile

application. The mobile application developed by MIT App Inventor and Google firebase

application programming interface. The button and display widget are used for application

development. Relay ON and Relay OFF are used to remote control the relays on ESP8266

and analog sensor data can share on display. The application successfully tested on IoT

development kit of ESP8266.

43

5.2.2 Blynk Mobile Application

Fig 5.4 Blynk App Dashboard

Fig5.4 shows the Blynk Mobile App Dashboard. Button and display widgets are

used to remote control NodeMCU Board.There 2 LEDs, 1 Button are controlled with the

digital GPIO of ESP8266 and the display show the analog sensor real time data.

44

5.2.3 Remote access with MQTT Dashboard

Fig. 5.5 Remote access with IoT MQTT Dashboard

Fig. 5.5 shows the simple toggle button for ON and OFF button with IoT MQTT

dashboard to control the raspberry pi GPIO.

 5.3 Monitor and control on Firebase Cloud:

 5.3.1 DHT Sensor Real time database:

Fig. 5.6 DHT 11 data on Firebase

45

Fig. 5.6 shows the real time data base service is used in google firebase.

Temperature and humidity data are continuously update on this page. This data value

changes with few milliseconds and so, it is called the real time database.

5.3.2 IoT development hardware data on firebase

Fig. 5.7 IoT development hardware data on firebase

Fig. 5.7 Shows Home Automation development kit data share on Google firebase

database. S1, S2, S3, S4 are the relays. Relays can be on or off by changing this value as 1

and 0. S5 shows the analog sensor value update on real time basis.

46

5.4 Monitor and control on AWS IoT:

5.4.1 ESP8266 remotely access through AWS IoT:

Fig. 5.8 ESP8266 GPIO remotely access by AWS IoT

Fig. 5.8 shows the GPIO and Pin status of the ESP8266 with the topic /request and

it can change by the changing the pin 1 for ON and 0 for OFF.

47

 5.4.2 DHT 11 data share on AWS IoT:-

Fig. 5.9 Temperature data publish on AWS IoT

Fig. 5.9 shows the mqtt client test page of the AWS IoT. Temperature topic

subscribe the value of temperature data of DHT 11 sensor share by raspberry pi on

the AWS IoT Platform.

 5.4.3 Raspberry pi remotely access through AWS IoT

Fig. 5.10 Raspberry Pi GPIO remotely access by AWS IoT

48

Fig. 5.10 shows the AWS IoT MQTT client test page, the raspberry pi GPIO can

be control with the publishing ON and OFF on the raspi/1 topic.

5.5 Monitor and control through Workstation:

 5.5.1 Remote access with MQTTLens:-

Fig. 5.11 Remote access with MQTTLens

Fig5.11 shows the MQTTLens Web Application can publish and subscribe raspi/1

topic from the broker.hivemq.com MQTT broker to remote access raspberry pi.

49

Chapter 6

Conclusion and Future Scope

Conclusion

In this thesis, ESP8266 Wi-Fi Development Kit is used to design IoT gateway. Arduino

IDE and Mongoose OS are used for programming with ESP8266 Wi-Fi development

board. The appliance is connected with ESP8266 board can remotely control with Blynk

Application and Google firebase. Google firebase provides backend service for developing

mobile with MIT APP Inventor. AWS IoT is used as secured IoT platform for remotely

control ESP8266 and Raspberry Pi. DHT 11 Sensor publish the data on google firebase

and AWS IoT platform. Paho MQTT library provides MQTT client supports for the various

microcontroller. IoT MQTT dashboard provides mobile dashboard service to remote

control and monitoring raspberry pi. The gateway is developed and tested successfully.

Future Scope

Schematic and PCB design for the various IoT Application.

Machine learning and Artificial intelligence can be applied with IoT application.

50

Bibliography

[1].P. Srinivasan, “TM4C-IoT-Gateway-with-Security Protection in Texas Instruments,

 2016.

[2].H. Chen, X Jia “A brief introduction to IoT gateway”, IET International Conference

 on Communication Technology and Application (ICCTA 2011)

[3].N.Nitin “Choice of Effective Messaging Protocols for IOT Systems: MQTT, CoAP,

 AMQP and HTTP” 2017 IEEE International Systems Engineering Symposium (ISSE)

 2017.

[4].Arduino IDE “Arduino core for ESP8266 WiFi chip” [Online] Available

 https://github.com/esp8266/Arduino [Access: 16- October -2018]

[5].Mongoose OS “Mongoose OS Features” [Online] Available: https://mongoose-

 os.com/features.html [Access: 13-October-2018].

[6].Google Firebase Services “Firebase by Platform” [Online] Available

 https://firebase.google.com/docs/ [Access: 10-October-2018].

[7].Amazon Web Services “AWS IoT Core” [Online] Available: https://aws.amazon.com/IoT-

 core/ [Access: 18–October-2018].

[8].T.Mattison “AWS IoT on Mongoose OS” [Online] Available:

 https://aws.amazon.com/blogs/apn/aws-IoT-on-mongoose-os-part-1/ [Access: 20–December-

 2018].

[9].Blynk “Blynk APP” [Online] Available: http://docs.blynk.cc/ [Access: 20–December-2018].

[10].M.Tharaniya soundhari, Ms.S.Brilly Sangeetha, "Intelligent Interface Based Speech

 Recognition for Home Automation using Android Application", in 2nd International

 Conference on Innovations in Information Embedded and Communication Systems (ICIIECS),

 2015.

[11].Eclipse Foundation “Eclipse Mosquitto” [Online] Available: https://mosquitto.org/ [Access:

 10–March-2019].

[12].Steves “Beginners Guide to the Paho MQTT Python Client” [Online] Available:

 http://www.steves-internet-guide.com/into mqtt-python-client/ [Access: 20–March-2019].

51

[13].Raspberry pi Documentation “Raspberry Pi 3b+” [Online] Available:

 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ [Access: 20–February-

 2019].

