
I

Validation of Functional Safety Module

with IEC 61508 Safety Standard

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

by

Aayushi Kothari

(18MECE01)

Electronics & Communication Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

II

Validation of Functional Safety Module
with IEC 61508 Safety Standard

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

by

Aayushi Kothari

(18MECE01)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Mahaveer Addanki Dr. Ruchi Gajjar

System Validation Engineer Assistant Professor EC Department,

Intel Technology India Pvt. Ltd., Institute of Technology,

Bengaluru. Nirma University, Ahmedabad.

Electronics & Communication Engineering Department

Institute of Technology-Nirma University

Ahmedabad-382 481

III

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

Aayushi Kothari

18MECE01

IV

Disclaimer

“The content of this thesis does not represent the technology,opinions,beliefs,

or positions of Intel Technology India Pvt. Ltd., its employees,vendors,

customers, or associates.”

V

Certificate

This is to certify that the Major Project entitled “Validation of Functional

Safety Module with IEC 61508 Safety Standard” submitted by Aayushi

Kothari (18MECE01), towards the partial fulfilment of the requirements for the

degree of Master of Technology in Embedded Systems, Nirma University, Ahmed-

abad is the record of work carried out by her under our supervision and guidance.

In our opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this major project, to the best of our

knowledge, haven’t been submitted to any other university or institution for the

award of any degree or diploma.

Date: Place: Ahmedabad

Dr. Ruchi Gajjar Dr. N.P.Gajjar

Internal Guide Program Coordinator

Nirma University Nirma University

Dr. Dhaval Pujara Director

Head of Department, Institute of Technology

Nirma University Nirma University

VI

Certificate

This is to certify that the Major Project entitled “Validation of Functional

Safety Module with IEC 61508 Safety Standard” submitted by Aayushi

Kothari (18MECE01), towards the partial fulfilment of the requirements for the

degree of Master of Technology in Embedded Systems, Nirma University, Ahmed-

abad is the record of work carried out by her under our supervision and guidance.

In our opinion, the submitted work has reached a level required for being accepted

for examination.

Ms. Yamuna Lingam

Engineering Manager

Intel Technology India Pvt. Ltd.

Bangalore

VII

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. N.P.Gajjar,

PG Coordinator of M.Tech Embedded Systems and Dr. Ruchi Gajjar for guide-

lines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Dr. Ruchi Gajjar, guide of my internship project for her exemplary guidance,

monitoring and constant encouragement.

I would also like to thank Mr. Mahaveer Addanki and Ms. Yamuna

Lingam, external guide of my internship project from Intel Technology India

Pvt. Ltd., for guidance, monitoring and encouragement regarding the project.

Aayushi Kothari

18MECE01

Company Profile

Intel Corporation was founded on 18 July 1968. It is an American multi-

national corporation and technology company which has its headquarter in Santa

Clara, California, in Silicon Valley. It is the world’s second-largest and second high-

est valued semiconductor chip manufacturer based on revenue and is the inventor of

the x86 series of microprocessors, the processors found in most personal computers

(PCs).

Our in-depth understanding of technology and hands-on experience helps us to

bring the best technical practices and to deliver a world-class quality of services.

Continuous learning and an innovative attitude are part of our work culture that

always keep us prepared for best effective practices.

We serve our clients with silicons(CPU), firmware and different technologies de-

veloped by Intel loaded to it along with its validation done.

VIII

Contents

Declaration III

Disclaimer IV

Certificate V

Acknowledgements VII

Company Profile VIII

Abstract XVII

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 1

1.3 Problem Statement . 2

1.4 Requirements . 2

1.5 Scope of Work . 2

1.6 Gantt Chart . 3

1.6.1 Internship Summary . 3

1.7 Thesis Organization . 3

2 Background Theory 5

2.1 Background . 5

IX

CONTENTS X

2.2 Terms and Definitions on Safety Concepts 6

2.2.1 Fault . 6

2.2.2 Failure . 6

2.2.3 Relationship between Failure, Fault and Error 6

2.3 Failure category . 6

2.4 Functional Safety . 9

2.4.1 Functional Safety Standard: IEC61508 10

2.4.2 Risks and Risk Reduction . 13

2.4.3 Hazard and Risk Analysis . 13

2.4.4 Safety Integrity Level - SIL 14

2.4.5 Functional Safety Life-cycle 14

2.4.6 Fault Avoidance and Fault Tolerance 15

3 Architecture of Functional Safety Module 18

3.1 Hardware to Host Application Architecture 18

3.2 IFWI . 19

3.2.1 IFWI Stitching . 20

3.3 Failure Modes in safety System . 21

3.4 Fault Detection Mechanism . 21

3.4.1 Information Redundancy . 23

3.4.2 Software Test Library and Test patterns 24

3.4.3 Lockstep . 25

3.4.4 Split Lock . 26

3.5 Software based Lockstep Computing 27

3.6 Functional Safety Architecture . 27

3.7 Voting Systems . 30

3.8 Proof Testing . 32

4 Software Validation Techniques 34

4.1 Software Development and Testing 34

CONTENTS XI

4.2 Validation Techniques . 35

4.2.1 Waterfall Model . 35

4.2.2 V - Model . 36

4.3 Inter Process Communication . 38

5 Results and Outcomes 40

5.1 Phase I: Validation Cycle . 40

5.1.1 Test Case Development . 41

5.1.2 Coverage Details . 42

5.2 Functional Safety Modules . 43

5.2.1 Communication Libraries . 43

5.2.2 Software Test Libraries . 44

5.2.3 Proof Testing . 45

5.2.4 Host to Host Communication 45

5.3 Phase II: Basic Acceptance Test . 45

6 Use Case 46

6.1 Industrial Use Case . 46

7 Conclusion 50

7.1 Future Work . 51

References 52

List of Figures

2.1 Relationship between Error, Fault and Failure 7

2.2 Failure Classification . 8

2.3 Technical Requirements of IEC 61508 [1] 11

2.4 Life cycle of IEC61508 . 15

2.5 Simplified processes for Safety System stated by IEC61508 16

2.6 Fault Tolerance Flow of IEC61508 17

3.1 Layered Architectural Flow . 19

3.2 IFWI Building . 20

3.3 IFWI Stitching . 20

3.4 Cyclic Redundancy Check . 23

3.5 STL for a CPU-based system . 24

3.6 Software Test Library . 25

3.7 Lockstep Computing . 26

3.8 Software-based Lockstep Computing 28

3.9 Functional Safety Architecture . 29

3.10 SOC Block Diagram . 30

3.11 One out of one System Structure . 31

3.12 One out of Two System Structure 31

3.13 One out of Two Diagnostic System Structure 32

3.14 Proof testing . 33

XII

LIST OF FIGURES XIII

4.1 Waterfall Model . 35

4.2 V-Model . 36

4.3 RTOS . 38

5.1 Validation Process . 41

6.1 Industrial Assumed Use Case . 47

6.2 Block Diagram of IoT in Industrial Application 48

List of Tables

2.1 Category of Frequency[1]. 13

2.2 Category of Consequences[1]. 13

2.3 Classification of SIL[1]. 14

5.1 Test Count . 42

5.2 Test Coverage Details . 43

XIV

List of Abbreviations

FuSA Functional Safety

IOT Internet of Things

FW Firmware

SW Software

IFWI Integrated Firmware Image

BIOS Basic Input/Output System

SDLC Software Development Life Cycle

STLC Software Testing Life Cycle

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ASIL Automotive Safety Integrity Level

SIL Safety Integrity Level

EUC Equipment Under Control)

UAT User Acceptance Testing

LLD Lower Level Design

XV

CHAPTER 0. LIST OF ABBREVIATIONS XVI

SOC System on Chip

FPGA Field-Programmable Gate Array

SLC Safety Life Cycle

1oo1 One out of one

1oo2 One out of two

1oo2D One out of two with Diagnostic

SIS Safety Integrated System

Abstract

In the current generation, humans are using a lot of machines and embedded

devices which can cause harm with either physical loss or financial loss. And these

machines add luxury to our lifestyle, so it became a crucial part of our life. It’s

necessary to make our system hazard-free or at-least to diminish the risks which

are introduced due to it. So, a product must be developed considering the risk

which is needed to be reduced to its tolerable value. This thesis gives vision to the

plan and develops the safety-critical systems which implement the safety functions

to decreases the risks caused by different machines and systems. The probabil-

ity of occurrence or severity of incidents is deteriorated by tracking the system in

such a way which keeps the failure in control. The regulation of law and Standard

plays a vital role in designing and developing such a system which follows all the

requirements starting from initial phase to final product level. In this thesis, Func-

tional safety system is introduced with a design viewpoint for the development of a

product which will be used in the industry. A Software-based Lockstep comes in a

fault-tolerant system that performs the same set of operations at the same time in a

parallel fashion. The comparator logic compares the result on a cycle-by-cycle and

if the outcomes are equivalent. On the off chance that there are disparities between

the outcomes, this could be a captured without causing failure to the whole system.

To increase the correctness of Software-based Lockstep, required set of scenarios

are set to validate the feature using multi-threading, Inter-Process Communication

and Scheduling processes. Thus, Validation of such timely critical Software-based

Lockstep will help to detect the failure in Functional Safety Module of Intel SOC.

XVII

Chapter 1

Introduction

1.1 Motivation

Functional safety is a concept which is applicable across all industry sector to enable

the multiform technology that aims Safety-related systems. The leading goal defin-

ing Functional Safe System is to turn down the probability of collapses or failures

at a given tolerable rate in the spectre of malfunctioning activity. Safety Standards

provide a reference life-cycle to achieve Functional safety of E/E/PE i.e. Electron-

ic/Electrical/Programmable Electronic systems based on Hazard identification and

risk analysis.

1.2 Objective

Functional Safety is becoming a crucial issue for Industrial automotive Domain

which have its Standards IEC61508 and ISO26262 respectively. Any Hazard caused

by malfunctioning of Electrical and electronic or programmable Devices due to Ran-

dom Hardware Failure and Systematic Failure is addressed by these Standards.

IEC61508 plans the overall requirements to confirm the system’s operation, im-

plementation, planning, designing, maintenance is delivering the needed Safety In-

tegrity Level (SIL). There are 4 SILs which states according to the risks convoluted

1

CHAPTER 1. INTRODUCTION 2

in the application, and to shield in case of the highest risks, SIL4 being used.

1.3 Problem Statement

The system is being developed based on the Functional Safety Standards of IEC

61508 to make sure that the product meets out its functional safety requirements.

Verification and Validation model techniques being used with each of the design

phases to secure that the system is developed as per the given safety requirements.

The End product makes sure that the system is safer to use without causing any

hazards due to malfunctioning behaviour of electrical or electronic devices because

of Systematic and Hardware failure.

1.4 Requirements

For the implementations following the knowledge requirement is needed:

• Functional safety Standards.

• Knowledge of Embedded C language.

• Linux Scripting

• Knowledge of Multi-processes and Multi-threading.

• Mailbox concept

1.5 Scope of Work

The focal scope of work is to reduce the observable risk associated with functional

failure of the system below a threshold given by the assessment of severity, expo-

sure, and controllability with efficient and optimised Validation and Verification

Techniques.

CHAPTER 1. INTRODUCTION 3

1.6 Gantt Chart

1.6.1 Internship Summary

This Gantt Chart shows the work done throughout the Internship.

1.7 Thesis Organization

• Chapter-1 Introduction points the quick requirements, Problem statement

also give a brief idea about project goal and the origin of motivation. As

part of the work done is manifested with the Gantt charts pointing project

development workflow done throughout the internship.

• Chapter-2 Background Theory points the Background Theory of Func-

tional safety and its Standard and its importance in Safety systems.

• Chapter-3 Architecture of Functional Safety Module describes the

overall system architecture in brief. In this chapter, a description of Intel

architecture functional flow is mentioned along with an upper-level flow of

CHAPTER 1. INTRODUCTION 4

Boot process of a system and how the next processes are carried out has been

explained. Also explained the different fault mechanism detection methods

and how the software-based Lock-stepping is used in industrial application.

At last, the IFWI Stitching of particular feature is also mentioned.

• Chapter-4 Software Validation Techniques describes the different tech-

niques and modelling in development and Validation environment which is

being practised in the real world. Also discussed the pros and cons of the

modelling Technique used. Also, the work was done as part of Validation.

• Chapter-5 Results and Outcomes describes about the Validation cycle

and Test case development also about the coverage details. All together discuss

about the all the modules which are being owned in this project.

• Chapter-6 Use Case describes the general and how the Internet of Things

works in the industry.

• Chapter-7 Conclusion describes the executive summary of this thesis and

expected future work is pointed out in this chapter.

Chapter 2

Background Theory

This section includes a history of safety, systems which are related to safety and

their engineering. Also described the Functional Safety significance to the extent of

the design of a system.

2.1 Background

In public spaces, Industries, corporate; all are encircled by a growing extend of

electric and electronic devices and systems. Perhaps in some situations even knowing

about the unwanted accidents some possibility of loss remains irrespective of actions

undertaken to lessen the risk occurrence. For instance, present-time cars have many

techniques to reduce the risk ratio of injury or loss of life in any of the unwanted

accidents but some of the methods cannot make the system completely failure-free

or totally safe system. So, in order to make the safe system, only thing is proposed

is to reduce the risk or failure scenario into a tolerable level which nor give worse

impact to life or surrounding and suffice the risk. From an ideal safety point, there

should be a conformation which indicates the risk is been mitigated to a tolerable

level.

5

CHAPTER 2. BACKGROUND THEORY 6

2.2 Terms and Definitions on Safety Concepts

In this section, basic terms and definitions are described.

2.2.1 Fault

When a failure occurs, the item enters the failed state. A failure may occur in two

phases of stages i.e. while running or while in Standby.

Differences between a computed, observed, or calculated value or strategy and

the acceptable, specified, or theoretically correct data or condition. It occurs when

the performance of a system deviates from the target.

2.2.2 Failure

Failure is a situation that occurs at a particular point in time. It may develop

gradually and it occurs as a sudden unwanted event. There are different possible

ways of failure getting disclose which may be on-demand, or during a functional test

or by monitoring or Diagnostics[3].

2.2.3 Relationship between Failure, Fault and Error

A failure initiates from an error. When the failure happen, the item comes under a

fault state.

2.3 Failure category

Failures may be classified according to their:

a. Causes: To avoid future occurrences and make judgments about the repair.

b. Random failure: The failure, observed at a random point of time, which re-

sults from multiple attainable degradation logics in hardware. Random hard-

ware failures may be characterized by a failure rate that is either:

CHAPTER 2. BACKGROUND THEORY 7

Figure 2.1: Relationship between Error, Fault and Failure

(1) Constant, meaning that the component is in its useful life where impact

of ageing is negligible.

(2) Non-constant, meaning that the component is subject in the burn-in a

phase of a wear-out phase

• Systematic Failure : Failure which are certain cause, that can be re-

moved by any altercation of the System Design and in the change in the

manufacturing methods, change in operational process, documentation

or any related factors.

(1) It is always repeated when triggering condition is available.

(2) Systematic faults may be introduced in any life-cycle phase.

(3) If properly corrected, the failure will in theory never re-appear

c. Effects :To rank between critical and not so critical failures.

• Safe failures:

(1) Results in the pretended operation of the safety function to keep the

EUC in a safe state or maintain a safe state condition.

CHAPTER 2. BACKGROUND THEORY 8

Figure 2.2: Failure Classification

(2) Also, gain the possibility of the mock operation of the safety function

to keep the EUC into a safe state or maintain a safe state. A safe

failure can end up in a drop in production or service.

• Dangerous failures :

(1) Avoid a safety action from operating when required or causes a safety

function to fail such that the EUC is kept into a hazardous or poten-

tially hazardous state.

(2) Reduces the possibility that the safety function works correctly when

required

(3) A dangerous failure may result end up with a loss of safety.

d. Detectability:To distinguish failures that may be revealed “automatically”

and those that may be hidden until the special effort is taken, such as proof

tests.

• Detected: Failure which is immediately evident to operation and main-

CHAPTER 2. BACKGROUND THEORY 9

tenance personnel as soon as it occurs. A typical example is failures

reported as diagnostic faults or alarms.

• Undetected : Failure which is not immediately observed in operations

and in any maintenance cycle. A typical example is a failure that is

hidden until the component is asked to carry out its function.

2.4 Functional Safety

Functional safety explains “absence of unreasonable risk due to hazards caused by

malfunctioning behaviour of EE systems”[4]. It means, that a failure in one part

of the EE may lead to accidents with damaged equipment, injuries or even the loss

of lives. Functional safety is not to confuse with active safety or passive safety.

Active safety is grouping features and technology with a focus to avoid accidents.

Passive safety covers subsystems that aim to reduce the impact of an accident. Both

active and passive systems must be functionally safe as well, since a malfunctioning

behaviour may result in accidents[2].

The goal of the functional safety standards is to provide methods to recognize and

avoid random failures for electronic Devices and systematic failures for software. The

standards propose a development process requires, for example, specific methods to

be applied for development, independent verification and validation and collection

of safety arguments. The whole SLC i.e. Safety Life Cycle is described by IEC

61508. This SLC assumes that products are developed from scratch and a V-Model-

based development process is used. When developing safety-critical products in

product lines, this SLC is valid and compliance needs to be shown when certifying

the products.

CHAPTER 2. BACKGROUND THEORY 10

2.4.1 Functional Safety Standard: IEC61508

The concepts of functional safety and SIL i.e. Safety Integrity Level of electronic

programmable devices and electrical are fulfilled in the issued Functional safety Stan-

dard of International Electrotechnical Commission IEC 61508, Functional Safety of

Electrical/Electronic/Programmable Devices which gives the in-depth guide to how

to target functional safety from the very beginning of product to its system-level

and also provides the requirements with full life-cycle of system.

The main objective of the standards is the theory of safety life cycle, risk and

safety logic, safety integrity levels. The safety life cycle is described as an Engi-

neering system which involves necessary processes to attain functional safety. A

function of the frequency of the hazardous event and the event consequence severity

is the risk. Safety integrity levels indicate the target Value of safety functions to be

executed by E/E/PE safety-related system [1].

This IEC61508 functional standard which has SILs are explained with respect

to the risks implicated in the customised application, where SIL4 is used to give

protection against the highest risks. This Standard is communicated with all the

links with a specified process which have common terminology and parameters to

look into.

The Standard is divided into 8 parts:

• IEC 61508 - Part 0, for Functional safety and IEC 61508

• IEC 61508 - Part 1, for General requirements

• IEC 61508 - Part 2, for Requirement for E/E/PE safety-related system

• IEC 61508 - Part 3, for Software-based Requirements

• IEC 61508 - Part 4, for Definitions and its Abbreviations

CHAPTER 2. BACKGROUND THEORY 11

• IEC 61508 - Part 5, for Examples and Techniques for the determination of

safety integrity levels

• IEC 61508 - Part 6, for Guidelines on the use of IEC 61508-2 and IEC 61508-3

• IEC 61508 - Part 7, for Overview of techniques and methods

Figure 2.3: Technical Requirements of IEC 61508 [1]

Part 1 covers the overall requirements for documentation, management, compli-

ance of functional safety and its assessment. It gives a detailed presentation of the

life-cycle of safety Standard.

Part 2 includes the basic Hardware-based requirements of safety-related systems.

this part covers the entire system development with respect to the development of

hardware product. Also gives the different techniques to handle failures during

run-time operation. It incorporates the hardware-based fault tolerance, diagnostics

requirements, limitations, systematic safety issue for hardware.

Part 3 indicated the Software related requirement for IEC 61508 standard. It

comprises all software details of the safety life cycle. It contains the list of techniques

and measurement used in software development.

CHAPTER 2. BACKGROUND THEORY 12

Part 4 comprises the abbreviations and definitions been used in the whole stan-

dard. it is used for the reference to get the accurate meaning of the terms used in

Standard.

Part 5 includes the Details for the risk, safety integrity, SIL selection and toler-

able risk. the quantitative and qualitative methods are used for SIL selection. the

quantitative approach included the frequency of occurring hazardous incident with

respective of the strength of the consequences for any situation.

Part 6 covers the guideline of Software and Hardware requirements including the

in-depth information of the procedures. It provides the method of calculations for

estimating the multiple failure modes within architecture.

Part 7 covers methods and techniques to maintain safety even in error injecting

conditions. It includes the prevention of system failure or any failure component

throughout the safety life cycle.

This Standard is field application and hs been used a for industries measure-

ments, control and automation. It gives comprehensive specifications for both Soft-

ware and Hardware with enclosed hardware and system integrity. An emergency

shutdown plays a vital role in ensuring the safety of operation and production which

is given by Safety Interlock System SIS. Similarly, the ISO 26262 Standard is for

Road vehicle and automation which is the modification of IEC61508. There is also

sub-partition in IEC61508 standard where a particular standard is used for a specific

sector or area.

• IEC 61511 in Process Industry

• IEC 61513 in Nuclear power plant

• IEC 62061 in Machinery Section

• IEC 61800-5-2 in Power drive systems

CHAPTER 2. BACKGROUND THEORY 13

2.4.2 Risks and Risk Reduction

IEC61508 has some of the following observation on risks-

a. Risk cannot be reduced to Zero or no risk.

b. Risk which is not tolerable should be brought down to tolerable or below that.

c. Safety should be considered from the initial phase.

2.4.3 Hazard and Risk Analysis

The IEC61508 standard conveys that ”The EUC (Equipment Under Con-

trol) risk shall be eliminated or evaluated for each determined Hazardous

event.”

The analysis of Hazard is carried by six different categories of occurrence and

four different consequences is shown in the below tables.

Table 2.1: Category of Frequency[1].

Category Definition Failures per year
Frequent Many times in system lifetime 10−3
Probable Several times in system lifetime 10−3 − 10−4
Occasional Once in system lifetime 10−4 − 10−5
Remote Unlikely in system lifetime 10−5 − 10−6
Improbable Very unlikely to occur 10−6 − 10−7
Incredible Cannot believe that it could occur 10−7

Table 2.2: Category of Consequences[1].

Category Definition
Catastrophic Multiple Loss of life
Critical Loss of single Life
Marginal Major injuries to one two persons
Negligible Minor injuries at worst

CHAPTER 2. BACKGROUND THEORY 14

2.4.4 Safety Integrity Level - SIL

SIL is the possibility of safety based system executing the necessary safety actions

within allocated time duration in all conditions. It is the discrete level for the specifi-

cation of the safety integrity requirements. On the basis of the number quantitative

factor and qualitative methods such as development process and safety life cycle

management, the SIL is determined.

Following table describes the SIL levels and its respective failure probability.

Table 2.3: Classification of SIL[1].

SILs Low demand mode of operation
4 10−5 − 10−4
3 10−4 − 10−3
2 10−3 − 10−2
1 10−2 − 10−3

So, SIL4 is used to give protection against the highest risks and SIL1 is used to

give protection against the lowest risks.

2.4.5 Functional Safety Life-cycle

The IEC60518 standard life-cycle describes the entire production Steps. The process

begins with the basic objective, concept, the scope of the system along with system

assessment. Further risks are examined the risk mitigation work. The Functional

safety system is selected to reduce such situation.

Functional Safety System process initiates with proper Scope Definition and its

conceptual requirement specification to define the project. Then, according to the

safety requirement plotted, hardware and software design is developed and finally,

both domains are integrated into a functional unit and validated as a whole func-

tional system. On the basis of the failure and risk analyses, the modifications are

introduced from where the whole process repeats to make accurate Functional safety

system.

CHAPTER 2. BACKGROUND THEORY 15

Figure 2.4: Life cycle of IEC61508

2.4.6 Fault Avoidance and Fault Tolerance

Functional safety Standard ensures a process that identifies the possible faults to

eliminate it and identify it during Run time. It can be avoided by designing the

system in such a way that it does not even occur. But the fact is all faults are not

eliminated but it can be detected during a run time which keeps the systems in a

predefined safe state.

The following Figure explains the basic flow of Fault detection and outstretches

to the safe-state as explained in IEC61508 Standard.

Initially System running in Normal operation and Fault turned up where a fault

may be noticed in a diagnostic interval using Diagnostic logic and puts the system

in Safe State during Fault Reaction time. A fault-tolerant system is a system where

the system is kept in a safe State even before the occurrence of Hazard which causes

harm. It is necessary to get a clear flow to avoid faults and also able to detect the

fault in run-time and reach it to a safe state. The technical concepts should mention

the need for analysis of fault, its avoidance, residual faults which are detected in a

CHAPTER 2. BACKGROUND THEORY 16

Figure 2.5: Simplified processes for Safety System stated by IEC61508

safe state for all configuration of all products.

CHAPTER 2. BACKGROUND THEORY 17

Figure 2.6: Fault Tolerance Flow of IEC61508

Chapter 3

Architecture of Functional Safety

Module

This chapter describes the Functionality of Firmware and Software level flows at the

system level. This defines the design and architecture of module meeting Functional

Safety Requirements and its functionality.

3.1 Hardware to Host Application Architecture

in any Embedded system, BIOS is required that is Basic Input Output System where

the heart of BIOS is Boot ROM. It will bootstrap the processor and batch the OS

which will enable the fundamental ports at Boot time. the maintenance of the HW

activity is done by it until the OS encounter to take the control. A BIOS is in-charge

for initialling those memory registers to reach into the discovery phase. After this

step, the whole control is handed to OS. Its aimed to make the system up and keep

it running where it also look after power unit management. On the motherboard,

the Bios is saved as Firmware Image. Its Function is to initialise memory register,

processor, other peripherals and chipset.

The register setting is captured in a non-volatile chipset where the User can

modify some of the settings by BIOS console.

18

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 19

Figure 3.1: Layered Architectural Flow

BIOS is stored as Firmware on a FLASH chip on a Motherboard. In flash memory,

the Intel specific pre OS FW can be flashed with variant partition size. And using

SPI flash mechanism, BIOS and other peripheral FW can be flashed to the board.

3.2 IFWI

IFWI is Integrated FW Image binary which holds the absolute software of a

system. The FW image contain the other images as the whole system have multiple

components. So in addition to feature addition and loading the all FW component

into IFWI Stitching is done.

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 20

Figure 3.2: IFWI Building

3.2.1 IFWI Stitching

Intel platforms utilize IFWI which have base IFWI and on top of it contains other

firmware components to boot which are needed be signed and manifested. The

signing of binary will ensure verified boot[7].

Figure 3.3: IFWI Stitching

Integration of all the Configuration of different IPs is done by invoking this tool.

Manual process used to stitch one binary with different configuration files. There

are different IPs and its Configuration which combined together by Stitching tool.

At the End IFWI of 32/64 MB is resulted.

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 21

3.3 Failure Modes in safety System

The occurrence of Failures can be anytime in the entire system or in the implemen-

tation flow or in the design of a hardware component or software feature including

the integration of all the components altogether in a system. Faults are classified as

Systematic Failure or Random Failure.

Systematic faults which get inherited in the design and fall out in hardware,

software and at the platform level resulting in the deficiency of the development,

like:

• Incorrect or ambiguous specification

• Failure in the design and Validation process

• Failure in requirement understanding

• Tools or Binary generation failure

Random faults occurrence is during implementing and are originated due to man-

ufacturing, ageing and conditional/situational based. Those failures are captured in

hardware and arise disordering in software. It could be permanent or transient at

the architecture level. It includes:

• Physical defects caused by Permanent Failures

• Environmental factors like radiation due to Transient Failures

• The statistical failure of asynchronous events due to Transient faults

3.4 Fault Detection Mechanism

Systematic Failure can be avoided by strong Verification strategy keeping Safety

integrity level in reference. So the Failures can be surpassed using the stimulus-

based testing Techniques which includes formal and semi-formal methods.

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 22

In Formal Methods proper use of mathematical approach such as Finite state

machines and algebra which are implemented logically using specific tools including

modelling languages which check the correctness and verify with the models.

Semi-formal specifications include pseudo-code and structured diagrams or models

this decreases ambiguity in hardware and enables get an accurate result of the design.

A technique used is the Memory Management Unit (MMU) and also the Memory

Protection Unit (MPU) to detect the imprecise data. Development of Software is

done keeping hardware capability in reference and list out the Assumptions of Use

(AoUs) and this development is specified in Hardware Software Interface (HSI).

Random faults are detected in hardware by software mechanism by employing

nominal hardware. Random faults can be:

• Single Point Failure – one failure, like an open/short circuit

• Multiple point Failure – one or more failures, several simultaneous single point

faults

• Latent faults – multiple point faults events that only occur under fault situa-

tion.

Once the indication of a fault is captured then diagnostic and corrective methods

are undertaken either periodically or occasionally.

Diagnostic Types:

• Continuous Diagnostic

– Temporal duplication with comparison of results known as Dual-Core

• Lockstep

– Information surplus, such as Error Detection or cyclic redundancy check.

– Analytical fault tolerance

– Redundancy at the system level, known as Software Lockstep

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 23

– Functional testing using software (Software Test Library)

– Inspection based Built-In Self-Test (BIST) of logic or memories

– Demand-based test pattern checking

3.4.1 Information Redundancy

In this Technique is Correction Code and error Detection is included. Cyclic Redun-

dancy Check is the best method to capture the error and it is highly effective way

of detecting errors with bit cells within memories. A CRC generator logic is created

inside the software at Host end to calculate the CRC for each cycle and send it to

Intel Safety Island.

Figure 3.4: Cyclic Redundancy Check

In CRC detection method Polynomial is to be selected first it could be either

8,16,32 bit and Host will send the Message contacting the Data or Signature and

Seed is to be added to it. An generating the CRC, a checksum is calculated out of

it which indicates the presence of Error.

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 24

3.4.2 Software Test Library and Test patterns

Software Test Library is a Software-based Fault detection method were periodically

checking is done using software logic within Framework Application. This will check

the Hardware functionally by performing its test repetitively in a deterministic man-

ner to target the maximum diagnostic analysis.

Software Test Library is also known as a self-test by software or sometimes Soft-

ware BIST(SBIST). It will periodically test the processor along with the rest of

the components/peripherals in a fixed short window. STLs operation is performed

without hindering the system state and if any failure is observed then it can quickly

stop the operation by generating an interrupt to the working system. STLs re-

Figure 3.5: STL for a CPU-based system

quires less access to Hardware and require highest near to Host where the Customer

Application Operating system is performed as it is in-field online testing carried

out concurrently. STLs are executed in such a way to minimizes the disruption and

interrupt service availability by tightly integrated with Real-time Operation system.

While system performing STLs, CPU continuously interplay with memory mod-

ule for fetching instructions and reading and writing data to a particular memory

register. During run time CPU also perform other safety and no safety-related work-

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 25

load which interdependently interact with other peripherals and self-test routine will

induce a result to a single Register and create Signature. This Signature is checked

by self-test code itself. If any error is captured due to generation of incorrect signa-

ture is flagged in memory Register with the cause of the failure. STL is performed

Figure 3.6: Software Test Library

on the basis of the regular dedicated interval time slice. It means during computa-

tion of a quantum, context switching will be prioritized and the task will be started

on next quantum by fetching the previous data from the stored register and along

with this it performs fetching of memory registers for reading/write operations as

part of software BIST.

3.4.3 Lockstep

Processor lockstep is a method used to get the most stability in an Embedded

system. Adding another identical processor in a system which monitors and cross

verifies the activities undergoing in the system flow.

The two identical processors are started a the same time in system start-up mode,

it will encounter the same feed in that can be either code, bus operations and

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 26

asynchronous events, so during normal operation, the condition of the two processors

is alike from clock to clock. when this setup is working as expected then it is known

as operation working under lockstep mode.

Figure 3.7: Lockstep Computing

Whenever an error is observed in any of the processors it will reflect a difference

between the status of the two processors, which will eventually be evaluated as a

difference in the outputs from the expected one, so the main aim of the lockstep

computing is to monitor the outputs of the two processors and result from an error

in the case of inconsistency or in-variance.

This method is aimed to detect the wide range of faults and also to achieve high

diagnostic coverage but at the downside of identical Processor leads to increase in

power cost and area cost.

3.4.4 Split Lock

The Split/Lock is the technique which empowers either Split mode or Lock mode.

In Lock mode, only the prime core is present functionally and the redundant

core will be in the inactive state. That is the scenario when system boots or it in

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 27

reset mode in that state there is no memory sharing leading to increase the compute

performance at lower diagnostic coverage.

In Split mode, both cores are active and logically present both cores work on in-

dependent clocks and have separate has its own independent clocks and the isolation

of memory can handle the faults potentially.

3.5 Software based Lockstep Computing

Lockstep computing will require redundant processor which will mimic the original

processor and safety related workloads will be performed but this will increase the

hardware in terms of memory footprints. Since Intel CPUs do not have sufficient

hardware safety mechanisms to meet the high level of safety standards. Typical

Safety mechanisms like Hardware Lockstep used in the industry cause significant

overhead in terms of SOC size and cost.

For an example Hardware Lockstep Safety Monitor – Dual-Core Lockstep This

is used in different SOCs where Shadow core executes the same instructions as Main

core and comparator compare the output cycle by cycle basis. The difference in

outputs from the two processors will indicate the core fault. In the result of it is

an application is effectively using two cores but only achieving the performance of a

single core. This means that it leads to an expensive implementation. The main goal

of software-based lockstep computing is to increase the efficiency without getting

overhead of hardware by allowing the redundant core to execute the non safety-

related application. This allows the cores to perform multiple Customer Workloads

on the same cores along with the signature generation and its comparison.

3.6 Functional Safety Architecture

Safety Monitor component is in-charge of its own Functional safety in an Intel plat-

form. It communicates with the Safety Supervisor and gives Status accordingly. So

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 28

Figure 3.8: Software-based Lockstep Computing

it will work as Master and Slave.

Safety Monitor is a dedicated diagnostic IP that gathers all errors initiating from

discrete blocks means from different parts of the SoC and routes to the system with

dedicated pins.

The STL Manager will handle all the functionality related to STL execution

on the host, Error logging for Intel Safety Island. The 4 cores will undergo the

safety application or non safety-related operations. the Safety-related Application

will be carried out on the basis of software-based Lockstep. It is responsible for

software-based Lockstep services known as safety workloads. It provides APIs for

starting and stopping the software-based Lockstep on the system. The Communi-

cation Library provides the services for communication with the ISI. The customer

applications call the APIs in the user-space library for starting off the communica-

tion with the ISI. The Communication library will invoke the helper functions in

the CRC generator for calculating CRC and for formatting the data required to be

sent to the ISI FW. All the different software sub-components of the safety manager

shall use the OS Abstraction Layer (OSAL) to isolate itself from OS-specific rou-

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 29

Figure 3.9: Functional Safety Architecture

tines. The communication with the ISI shall be a request-response form with Host.

The STL manager and the software-based Lockstep manager can as well be devel-

oped independently by the customer. The STL manager and the software-based

Lockstep manager are reusable as these software components are developed in “C”

and they call the OSAL API for OS independence. The Communication Library

and software-based Lockstep functions also are developed on OSAL API for OS in-

dependence. The host driver is the PCI to communicate with bus driver supported

on the platform. The host driver also is attached to the OS framework and hence

has some OS level dependence.

An OK/NOK/Alert signal indicates the overall functional status of the ISI CPU

chips and these signals may be connected to an MCU on the platform or may drive

out some relay switches

Safety Island also performs the role of a diagnostic microprocessor and monitors

the health of the SOC in the platform. Safety island controls and takes part in

Safety Mechanisms execution to detect transient and permanent faults, for example,

it executes STLs (Software Test Libraries). Safety Island also acts as a Central

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 30

Figure 3.10: SOC Block Diagram

Alarm Collector for all the SOC safety alarms and reports them to the Safety Island

FW stack and to an external MCU or optionally performs actions based on user

configuration.

3.7 Voting Systems

Voting System is playing a critical role in Industrial and Automation Control where

it helps in notifies alert and interlock the system when any failure is observed in

the system. This will happen when the ongoing running Test Result fails and the

actions are taken according to the system structure. Such System will help in

executing safety functions to avoid the occurrence of any accidents.

So in simple terms, the system will have the sensor, input circuit, output circuit,

processing unit and executing unit. In the presence of Diagnostic circuit with multi-

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 31

channel, it will behave like feedback information to the system which is used to

do self-diagnosis of the system while saving the HW cost and in meantime also

performing actively.

In case of one out of one system (1oo1) is insecure system where in case of failure,

system will be stopped without any prior redundancy check or failure state check.

Figure 3.11: One out of one System Structure

In case of one out of two system (1oo2) there are two independent subsystems

which have two output which decreases the possibility of system failure as one of

the system will be in active state but this system is not able to diagnosis in case of

Failure.

Figure 3.12: One out of Two System Structure

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 32

In Case of one out of two with Diagnostic (1oo2D) system will have its own

diagnostic circuit connected to a system wherein case of any failure in result it will

alarm its own system and another system about the failure and it will safely break

the connection and work as 1oo1 System. It will detect the dangerous failures and

allow actuators to be in a safe state.

Figure 3.13: One out of Two Diagnostic System Structure

3.8 Proof Testing

Proof testing is explained in IEC61508 as a ‘Periodic test executed to detect danger-

ous hidden failures in a safety-related systems, if necessary, a repair can restore the

system to an “as new” condition or as close as practical to this condition’. A proof

testing purpose id to identify the undetected failures which the system is unknown.

It is an integral subsystem of the maintenance of the Intel safety SOC. A proof test

is done periodically to identify dangerous failures, test safety-related functionality

CHAPTER 3. ARCHITECTURE OF FUNCTIONAL SAFETY MODULE 33

for example reset, bypasses, alarms, diagnostics, manual shutdown, etc. The results

of proof testing are also a measure of the effectiveness of the SIS mechanical integrity

system and its reliability.

Figure 3.14: Proof testing

Chapter 4

Software Validation Techniques

In this chapter, the Validation scope, mythologies and testing flow are explained as

part of Validating the Functional safety module. The Development of Test cases

using Inter-Process Communication

4.1 Software Development and Testing

Software Development Life-Cycle is the sequence of events performed out by Devel-

opers to design and develop high-quality reliable software.

SDLC involves the coding tasks of the Developers as well as Validators who con-

tribute their involvement in making Software productive. Third-party involvement

is also there were stack-holder customize the software according to their requirement.

Software Testing Life Cycle involves Validation and Verification which contains

series of activities carried out with Validation Techniques to test software product.

STLC also involves Validator and Developers to interact with different modules and

verifies the program flow in all possible ways. Test cases are planned in earlier basis

and then Test Cases are Created depending on the feature.

34

CHAPTER 4. SOFTWARE VALIDATION TECHNIQUES 35

4.2 Validation Techniques

4.2.1 Waterfall Model

Waterfall model is a serial model split into layered phases of software development

activity. Where each stage has specific activity and task to perform during the SDLC

phase. Validation phase in waterfall model starts once the implementation of the

system is done.

Figure 4.1: Waterfall Model

There are few limitations listed below for the waterfall model[4].

• One way street: After the end of the first phase, the next phase starts then

there is no other way to go reverse on the last phase. It is one of the failures

of the waterfall model.

• Interaction: Lacked interaction with each other phases. A development process

begins, changes are not accepted easily.

• Support delivery of system: The waterfall model does not allow distribution of

CHAPTER 4. SOFTWARE VALIDATION TECHNIQUES 36

the system in pieces. Once the development process initiated, changes cannot

be implemented easily.

• Feedback path: This model does not support any feedback path. The waterfall

model thinks that no error is ever carried out by developers during any phases.

Hence, no error correction is required.

4.2.2 V - Model

The V-model is an SDLC model in which operation of processes occur in a sequen-

tial fashion in a V-shaped . It is described as Verification and Validation model[5].

It is constructed on the grouping of a testing stage for respective development phase.

Development is directly co-related with its testing. The further Step imitates only

after previous stage get finish. So Validation and Development runs parallelly in

this model.

Figure 4.2: V-Model

V-model has two partitions where one part is Development and another part is

Validation. That is the reason it is named as V-model.

CHAPTER 4. SOFTWARE VALIDATION TECHNIQUES 37

In Design Phase there are sub-parts:

• Requirement Analysis: This phase gathers the requirement and expecta-

tions of Customer in Detail and further work accordingly.

• System Design: This Phase has complete information about hardware setup

and Develop a System.

• Architectural Design: This phase has the broken down modular and func-

tional information about each module and also have inter-module connection

understanding. In-short have an overview and Detailed Structural Data within

it.

• Module Design: This phase further split the system into a module and

particularly feature along with detailed Design Knowledge of each module.

In Testing Phase there are sub-parts:

• Unit Testing: This phase will do unit level testing to eliminate bugs and

issues in the code of Design Team.

• Integration testing: This Phase has complete information about hardware

setup and Develop a System.

• Architectural Design: This phase verifies the communication among the

modules by integrating them at the same level so that it can verify Architecture

Design.

• System Testing: This phase will verify the whole system with its expected

functional behaviour with its inter-dependencies.

• User Acceptance Testing (UAT): This is the ultimate Stage where all user

requirements are met as the system is ready to be launch in the real world.

UAT is carried out in the user environment which is relevant to the production

environment.

CHAPTER 4. SOFTWARE VALIDATION TECHNIQUES 38

Concept of V-Model:

• Hierarchical Approach: Each phase gives more and more detailed informa-

tion about the Design.

• Scalability: V- model is Flexible to follow and customer product requirements

are identified clearly.

• Cross Referencing: It gives Direct Correlation between Development and

Validation- Verification task.

• Systematic Documentation: Documentation is done by both the Design

and Support team to maintain the system productively.

4.3 Inter Process Communication

In a safety-critical system, a real-time operating system (RTOS) is used where the

component sustains the verification. For aimed safety standard its necessary to

follow the regularity certification by following the proper process of testing. In

automotive, industrial, railway and medical applications FuSA RTOS is used to

enable and for the smooth run of the product safety.

Figure 4.3: RTOS

CHAPTER 4. SOFTWARE VALIDATION TECHNIQUES 39

FuSa RTOS is a deterministic real-time operating system which accurately con-

trols multiple threads of applications with a different priority, and follows pre-

emptive scheduling. It provides services that are required in composite real-time

applications, such as threads, processes, files, signalling, timers, memory and object

management, message exchange and others.

As part of Validation process created the Test cases which communicate with the

other processes which are targeted to run on different cores. this communication

between different processes and threads is done by Inter-process communication

using Signalling and pipes. The scheduling the processes in Linux is done by the

scheduler and its library. Core affinity used for dedicating the particular process to

be executed on a particular Core in CPU die. The wide use of Fork is carried out

for all the Test Cases for dedicated parent and child process.

Chapter 5

Results and Outcomes

In this chapter, as part of Validation of functional safety module certain process

is followed to develop test cases and to execute the test cases. This chapter gives

detailed view of Validation cycle, Test Development, Test coverage and Test results.

5.1 Phase I: Validation Cycle

The whole system has a specific predefined methodology to make the system valu-

able. And that is started with Test planning of features which contains the detailed

analysis and working scenarios and then it gets reviewed by Senior members and

Architect.

The Test plan of Functional Safety Module is carried out with in depth study of

following specifications,

• Hardware Architectural Specification

• Software Architectural Specification

• Modular Architectural Specification

• ISI Diagnostic Specification

• Customer Requirements

40

CHAPTER 5. RESULTS AND OUTCOMES 41

After that Test case Development phase starts where from a validation point of

view Test are created including all the positive-negative flows. Those tests are exe-

cuted to validate the Firmware released by Developers and report bugs accordingly.

During this phase Debugging and Code change is performed and in new Release,

those fixes are included. Again the same process repeats to make the system bug

free and get a productive outcome.

Figure 5.1: Validation Process

5.1.1 Test Case Development

The organised Validation process is designed and it is in synchronisation with De-

velopment. Initially, Test plan has to be created depending on all architectural and

functional flows. Those Test Plans gets reviewed by higher management and after

this process, Test Development phase starts where all positive, negative and corner

CHAPTER 5. RESULTS AND OUTCOMES 42

cases are kept in consideration meeting the functional requirement. Then execu-

tion phase starts where the binary is created, containing all different IP’s binary

and it also contains ISI Firmware binary. on Flashing that binary on Silicon board

will boot up and on to that Validation Test are executed. On failing Test, debug-

ging phase starts and the report is sent to the Development Team. So, in Next

Firmware Release fixes for the bugs are provided. and this cycle goes on enabling

the predefined features and meeting all Customer based requirements.

Across all the different Configuration, Developed around 61 Test cases with a

variety of Combinations to cover positive flow, Negative flow and the corner cases

to validate the ISI Firmware. Ensured that the Customer Requirements are met by

validating the features assigned.

Table 5.1: Test Count

Sr no. Test case Development Test Count
1 Unit Test 32
2 Functional Test 10
3 Negative Test 9
4 Stress Test 4
5 Integration Test 6

Total 61

Host side Test Case Development in Linux using Inter-process Communication

and scheduling of the process.

Firmware is side-loaded in Kiel IDE for debugging the Firmware execution by

checking the memory and watch windows in IDE.

5.1.2 Coverage Details

To measure the effectiveness and the potency of the Test or the Code for specific

feature, Test Coverage and Code coverage mythologies are used.

In simplest language the Code coverage means the percentage of Test that is

enfolded by the Code either manually or by automating the testing and using any

CHAPTER 5. RESULTS AND OUTCOMES 43

Test Framework. coverage sum up the testing of the features executed as a part of

the Functional based requirements specification, software-based requirements spec-

ification, and other required entities.

Table 5.2: Test Coverage Details

Sr no. Test Coverage Percentage
I Integration Test
a. Functional Coverage 77
b. Call Coverage 82
II Unit Test
a. Statement Coverage 95
b. Branch Coverage 91
c. Branch Coverage 71

5.2 Functional Safety Modules

The functional safety modules in Intel SOC is targeted to detect the fault occurrence

and detection. For validation the Functional safety modules, following features are

owned,

a. Communication Libraries

b. Software Test Libraries

c. Software based Lockstep in 1oo1 and 1oo2D systems

d. Proof Testing

e. Host to Host Services

5.2.1 Communication Libraries

The main focus during Validation phase was on the communication between the

Host to Intel Safety Island. The Communication Library provides the services for

CHAPTER 5. RESULTS AND OUTCOMES 44

communication with the ISI. The customer applications call the APIs in the user-

space library for starting off the communication with the ISI. The Communication

library will invoke the helper functions in the CRC generator for calculating CRC

and for formatting the data required to be sent to the ISI FW. To validate the

communication, use of APIs are done and Test cases are develop to verify the APIs

where each APIs have its own functionality.

5.2.2 Software Test Libraries

The Software Test Libraries will be provided as a library to the customer to be

integrated to customer application. The library will contain functions to be invoked

during startup. STLs will periodically test the processor along with the rest of

the components/peripherals in a fixed short window. STLs operation is performed

without hindering the system state and if any failure is observed then it can quickly

stop the operation by generating an interrupt to the working system. Validation is

done by sending the pair of correct STL number and incorrect numbers to verify the

validity of STLs results.

Software based Lockstep in 1oo1 and 1oo2D systems Validation of the Software

based Lockstep in 1oo1 system is done by scheduling the processes to be run on

different cores and the comparison of output is done within 2 cores and output is

created on basis of the pass or fail output. Validation of the Software based Lockstep

in 1oo2D system is done by scheduling the processes to be run on different channels

of different Systems having different ISI and the comparison of output is done from

different channels and output is created on basis of the pass or fail output. The

Scheduling of the processes is done by the using the OS features i.e. forking the

parent and child processes, scheduling the process to particular core, using Inter

process communication to communicate or to pass the signals to two processes.

CHAPTER 5. RESULTS AND OUTCOMES 45

5.2.3 Proof Testing

Proof testing includes action from getting permissions, generating notifications and

moving the system out of action for testing to confirm inclusive testing, registering

the proof testing and their results, keeping the system back in action, and comparing

the current test results and past proof test results. Validation of proof test is done

by creating the Binary with correct Proof testing content and then on flashing the

correct binary with FW code, Proof testing is performed which gives out the results

on basis of the performed configuration of registers.

5.2.4 Host to Host Communication

Host to Host Communication is carried out in 1oo2D system where the two Intel

SOC will be forming its own tasks and in case of any failure, systems collects the

Diagnostic Data and notifies the other Intel SOC about the failure and release its

connection and turn out the functionality into 1oo1 system. Test cases are developed

to generate the failure scenarios and inject the error to make the 1oo2D system to

end working as 1oo1 system after detecting the failure in one of the Intel SOC.

5.3 Phase II: Basic Acceptance Test

Basic Acceptance Test is set of basic functionality test which are performed during

every ISI Release done by development team. The Validation of BAT covers the basic

mandatory tests which enables the basic functional test of the all the IPs within ISI

is performed. On every Release the perfect set of Binaries are created having all

the components/IPs enabled and stitched together to make one valid binary which

contains the ISI FW image along with the other important Components all over the

Intel SOC.

Chapter 6

Use Case

As a safety compliant component, the Intel SoC can be used in a wide variety of

industrial applications which demand safe operation. This section describes this

general use case and the supporting safety functions, and functional safety require-

ments.

6.1 Industrial Use Case

The general use case for lake series of Intel is the ”control logic” shown in Figure

5.1 and its main functions are:

* Receive input from input devices (sensors, switches, counters etc.);

* Process input received from input devices as demanded by application software;

* Transmit processed data to output devices or other interfaces as demanded

by application software for normal operation and under error conditions. As shown

in Figure 5.1 several input devices (sensors) are processed by the control logic and

some output is driven in response.

There is a display, a Human Machine Interface (HMI) with associated software,

and some memory storage with its own software.

The HMI interface and display are assumed not to contribute to safety function.

46

CHAPTER 6. USE CASE 47

Figure 6.1: Industrial Assumed Use Case

Input devices: Input devices are used to obtain information about the system

(machine). Input devices can be a variety of device types like sensors, switches,

buttons, counters etc. The input information depends on the application need and

can be among the following: process parameters, machine health parameters, user

interactions, another machine or programs interactions, environmental parameters

etc.

Control Logic: The Intel SoC implements the control logic. Intel SOC receives

process input from input devices and executes the safety control algorithm as de-

manded by application software. The processed data is then analyzed by the control

logic for actions that are commanded to the output devices.

Output devices: The output devices again can be a variety of devices like relays,

solenoids, motors, digital modules etc.

Intel SOC is to address an industrial automation with the emergence of Industry

4.0, where the evolution emerged across the architecture. This change is mainly

evolved by the necessity to connect the machines to a common cloud infrastructure,

gather data from these machines constantly to understand and improve their effi-

CHAPTER 6. USE CASE 48

ciency, control them in a time-sensitive way to avoid unnecessary cycles and localize

the intelligence within the machines to drive better resource allocation. Customers

are looking at enabling these systems like programmable controllers, Robotic Ar-

mour motor/motion controllers to meet their goals of efficiency.

Figure 6.2: Block Diagram of IoT in Industrial Application

A majority of control systems being managed at the edge to beat the round-trip

latency to cloud in mission-critical applications, there is always a need to improve

the compute performance at the edge. Systems that can be upgraded to newer

high-end MPUs for better Networking.

An IoT gateway used as a data aggregator with inputs from several edge sensors

or devices and is expected to do a first level analysis/compute before pushing the

data either to cloud or back to the edge devices with appropriate actions. A gateway

can be implemented as a SW or a HW solution. Intel SOC is expected to be a

standard compute hub with multiple IOs connected to it. The sensor or edge device

CHAPTER 6. USE CASE 49

data can be transferred over any of the high-speed IOs. The edge device can be an

industrial machine connected over a standard Ethernet connection smart-city hub

which is expected to collect continuous data from multiple different sensors in a

given area. The data collected across all the possible IO connections to Intel SOC is

expected to be processed on any of the processor subsystems within the SoC. There

is a wireless connection to the cloud is created to support one of the desired cloud

management SW for customer implementation.

Chapter 7

Conclusion

In this thesis, Functional Safety is aimed for the domain of Industrial Application.

The target for the project work is to provide Strength to the creator of functional

safety systems. As the goal of this project is enable the FuSa Element Intel SOC

for the safe functioning of the System.The construction of functional safety systems

is dependent on standards. The standard IEC 61508 list out requirements and

recommendations of a customer by following the Design and Technical flows, its

architecture and methods to be applied in the Development and Validation Stages of

V-model in Functional Safety Systems. The Validation of modules is to be performed

by looking into its basic Functionality and its behaviour on Customer Platform and

also on Hybrid FPGA.

In process of completion of this Project, the generation of different test cases is

carried out. These test cases were based on the requirement of the Customer and

were developed by considering the stability of the module. Different timing critical

parameters are considered in scheduling the threads on different cores for the gener-

ation of fully functional test cases to get validate the Intel Safety Island Firmware.

Positive, negative, Stress and Corner Scenarios are covered in the Validation phase

to make the Firmware of the Functional Safety element robust.

The main focus during Validation phase was on the communication between the

Host to Intel Safety Island where it check for software based Lockstep, Software

50

CHAPTER 7. CONCLUSION 51

Tested Libraries, Host to Host Communication,

The conclusion of this project can be drawn to get functional safety function

in a system to process the feedback from the diagnostic circuits either from same

Intel Safety Island or from different channels of same Intel Safety Island for getting

information about certainty and uncertainties. The presence of the self-diagnostic

Circuit will help to decrease the possibility of sudden system failure.

7.1 Future Work

Optimizing the product by using the same or common artifacts and pass out the

higher payoff. Aiming for Validation of Functional safety module with optimal effort

and optimal configuration. In future scope to reduce the Hardware and to improve

the reliability of diagnostics by making the system as one out of three Diagnostics

where three safety systems are connected to each other and in case of any fault, any

one of the systems goes down and other two systems continue its functionality. This

will ensure the system can be more efficient and can be more robust to any failure.

The Module needs to show applicability and feasibility in more advanced Industrial

Cases which reduces the failure or fault occurring ratio.

References

[1] “IEC - International Electrotechnical Commission.” Www.Iec.Ch, 2010,

www.iec.ch/functionalsafety/?ref=extfooter. Accessed 14 Dec. 2019.

[2] Jari Rauhamäki , Designing Functional Safety Systems: A Pattern Language

Approach. (Publication; Vol. 1478), Tampere University of Technology, 2017,

TUTCRIS Portal

”https://tutcris.tut.fi/portal/files/11033872/rauhamki1478.pdf”

[3] Stephan Baumgart, INCORPORATING FUNCTIONAL SAFETY IN MODEL

BASED DEVELOPMENT OF PRODUCT LINES, Mälardalen University

Press Licentiate Theses, 2016.

”https://www.diva-portal.org/smash/get/diva2:906392/FULLTEXT02.pdf”

[4] S. Chonnad, R. Iacob and V. Litovtchenko, ”A Quantitative Approach to SoC

Functional Safety Analysis,” 2018 31st IEEE International System-on-Chip

Conference (SOCC), Arlington, VA, 2018 S. Chonnad, R. Iacob and V.

Litovtchenko, ”A Quantitative Approach to SoC Functional Safety Analysis,”

2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington,

VA, 2018.

[5] Liu, Bohan, et al. “An Incremental V-Model Process for Automotive

Development.” 2016 23rd Asia-Pacific Software Engineering Conference

(APSEC), 2016, ieeexplore.ieee.org/stamp/stamp.jsp/tp=arnumber=7890592,

10.1109/apsec.2016.040

52

REFERENCES 53

[6] International Electrotechnical Commission. IEC 61508. Functional Safety of

Electrical/Electronic/ Programmable Electronic Safety Related Systems.

Geneva: IEC Press; 2000.

[7] “Stitch IFWI Image — Slim Bootloader 1.0 Documentation.” Github.Io, 2018,

slimbootloader.github.io/developer-guides/stitching-ifwi.html. Accessed 14 Dec.

2019.

[8] Community.arm.com. 2020. Comparing Lock-Step, Redundant Execution

Split-Lock. [online] Available at: ”https://community.arm.com/developer/ip-

products/system/b/embedded-blog/posts/comparing-lock-step-redundant-

execution-versus-split-lock-technologies” [Accessed 9 May

2020].

[9] S. K. Das, ”Design and Modelling of Smart Environments: A Framework based

on Learning and Predictio,” 2007 2nd IEEE Conference on Industrial

Electronics and Applications, Harbin, 2007

[10] Xi, Y., Liu, F., Yuan, H. and Pan, D., 2013. Safety Voting System Based on

D-S Evidence Theory. TELKOMNIKA Indonesian Journal of Electrical

Engineering, 11(

[11] O’Reilly Online Learning.2020.Interprocess Communications In Linux: The

Nooks Crannies. [online] Available at:

”https://www.oreilly.com/library/view/interprocess-communications-

in/0130460427/” [Accessed 9 May

2020].

[12] 2020. [online] Available at: ”https://www.miinet.com/food-and-

beverage/alarm-trip-1-out-of-2-voting-with-high-availability” [Accessed 9 May

2020].

REFERENCES 54

[13] Kenexis.com. 2020. [online] Available at: ”http://www.kenexis.com/wp-

content/uploads/2018/11/Comparison-of-2oo3-voting-and-2oo2-voting-1.pdf”

[Accessed 9 May 2020]”

[14] GUO Haitao, YANG Xianhui. Quantitative Reliability Assessment for Safety

Related Systems Using Markov Models. Journal Tsinghua Univ (Sci Tech).

2008; 48: 149-152,156.

[15] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace

Applications: Soft Errors and Fault-Tolerant Design. Springer, 2016.

[16] M. Kooli, P. Benoit, G. Di Natale, L. Torres, and V. Sieh, “Fault injection

tools based on virtual machines,” in Reconfigurable and

CommunicationCentric Systems-on-Chip (ReCoSoC), 2014 9th International

Symposium on. IEEE, 2014.

[17] A. Velasco, B. Montruccio, and M. Rebaudengo, “A hardening approach for

the scheduler’s kernel data structures,” in CompSpace at ARCS2017, 2017.

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Company Profile
	Abstract
	Introduction
	Motivation
	Objective
	 Problem Statement
	 Requirements
	 Scope of Work
	 Gantt Chart
	Internship Summary

	Thesis Organization

	Background Theory
	Background
	Terms and Definitions on Safety Concepts
	Fault
	Failure
	 Relationship between Failure, Fault and Error

	Failure category
	Functional Safety
	Functional Safety Standard: IEC61508
	Risks and Risk Reduction
	Hazard and Risk Analysis
	Safety Integrity Level - SIL
	Functional Safety Life-cycle
	Fault Avoidance and Fault Tolerance

	Architecture of Functional Safety Module
	Hardware to Host Application Architecture
	 IFWI
	 IFWI Stitching

	Failure Modes in safety System
	Fault Detection Mechanism
	Information Redundancy
	Software Test Library and Test patterns
	Lockstep
	Split Lock

	Software based Lockstep Computing
	Functional Safety Architecture
	Voting Systems
	Proof Testing

	Software Validation Techniques
	Software Development and Testing
	Validation Techniques
	Waterfall Model
	V - Model

	Inter Process Communication

	Results and Outcomes
	Phase I: Validation Cycle
	Test Case Development
	Coverage Details

	Functional Safety Modules
	Communication Libraries
	Software Test Libraries
	Proof Testing
	Host to Host Communication

	Phase II: Basic Acceptance Test

	Use Case
	Industrial Use Case

	Conclusion
	Future Work

	References

