
Zero Touch Secure Device
On-boarding

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Surabhi Kothiyal

(18MECE15)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2020

Zero Touch Secure Device On-boarding

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

Submitted By

Surabhi Kothiyal

(18MECE15)

Under the guidance of

External Project Guide: Internal Project Guide:

Ritu Sethi Dr. Sachin Gajjar

Engineering Manager Asso. Professor, EC Dept,

Divneil Wadhawan Institute of Technology,

Senior Software Developer, Nirma University, Ahmedabad

Intel Technologies India Pvt. Ltd.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2020

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Technol-

ogy in Embedded Systems at Nirma University and has not been submitted else-

where for a degree.

2. Due acknowledgment has been made in the text to all other material used.

- Surabhi Kothiyal

18MECE15

iii

Certificate

This is to certify that the major project entitled “Zero Touch Secure Device On-

boarding” submitted by Surabhi Kothiyal (Roll No : 18MECE15), towards the

partial fulfillment of the requirements for the award of degree of Master of Technology in

Electronics and Communication (Embedded Systems) of Nirma University, Ahmedabad,

is the record of work carried out by her under my supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination. The

results embodied in this seminar, to the best of my knowledge, haven’t been submitted

to any other university or institution for award of any degree or diploma.

Dr. Sachin Gajjar Dr. N. P Gajjar

Internal Guide,Asso.Professor, Professor,

EC Department, Coordinator M.Tech - EC (ES),

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Dhaval Pujara

Professor and Head, Director,

EC Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iv

Certificate

This is to certify that the Major Project entitled “Zero Touch Secure Device On-

boarding ” submitted by Surabhi Kothiyal (18MECE15), towards the partial fulfill-

ment of the requirements for the degree of Master of Technology in Embedded Systems,

Nirma University, Ahmedabad is the record of work carried out by her under our supervi-

sion and guidance at Intel Technologies India Pvt Ltd. In our opinion, the submitted

work has reached a level required for being accepted for examination.

Ritu Sethi Divneil Wadhawan

Engineering Manager, Senior Software Developer,

Intel Technologies India Pvt Ltd, Intel Technologies India Pvt Ltd,

Bangalore Bangalore

v

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr.N.P.Gajjar, PG Coor-

dinator of M.Tech Embedded Systems and Dr.Sachin Gajjar, Asso. Professor for their

guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Dr.Sachin Gajjar, guide of my internship project for his exemplary guidance, mon-

itoring and constant encouragement.

I would like to express sincere gratitude to my manager Ritu Sethi Engineering

Manager, Intel India Pvt. Ltd. and Raghavendra Patil Engineering Manager, Intel

India Pvt. Ltd, for their encouragement and guidance. I would also like to thank my

mentor Divneil Wadhawan Lead Engineer, Intel India Pvt. Ltd., for his valuable

advices and support throughout the project.

Surabhi Kothiyal

vi

Abstract

Internet of Things (IoT) has become the foundation of trending technology in this modern

era. It has created many possibilities by integrating every object for interaction via

embedded systems involving the transfer of data to and from servers. As IoT is becoming

a essential part of human life, but with that there is an increase demand to provision

devices and a need of assurance that the device is properly authenticated. In general,

the process of on-boarding a device takes 20-50 minute, which involves co-ordination

among installation technicians, network and security operations, that will configure the

device and set the credentials to get the device on the network which can be costly and

time consuming. The proposed technology scales IoT deployments to put more devices

into service faster, by making it fully automated once on-boarded. It has a zero touch

approach, that makes IoT devices to dynamically discover the customer’s IoT platform at

power. For testing purpose, the approach has been carried out with raspberry-pi which

acts as device. When the device is first powered on it will connect to manufacturer server.

The manufacturer server will insert the credentials and the address of the rendezvous

server where it can connect next once it reaches the customer premises. Manufacturer

server creates a digital ownership voucher which is then send to customer. At customer

site when the device is powered on it is connected to rendezvous server which authenticates

the device and it sends the address of the owner server to the device. The device is then

connected to owner, the owner and device mutually authenticates themselves through

secret messages and ownership voucher. Once the trust is made the device is owned by

the owner.Thus zero touch secure on-boarding is achieved. For validation purpose, the

testing has been carried out with different configurations and functionality of the code

has been checked with the development of unit test case suit. The technology is using

security framework which is using ARM Trust Zone.

vii

List of Figures

2.1 Flow of Digital Signature . 7

2.2 Digital Certificate . 7

2.3 Encryption and Decryption in AES . 8

2.4 Shift Rows in AES . 9

2.5 Block Diagram Illustrating the Key Generation of RSA Algorithm 10

2.6 Public Key Infrastructure . 11

2.7 Overview of Interrupt Handling . 14

2.8 SMC Entry to Secure World . 15

2.9 REST API using JSON Format . 16

3.1 Block Diagram . 19

3.2 TEE Flow . 20

3.3 Connection of UART with Raspberry pi3 21

4.1 Flow of Development of Unit Test Case 23

4.2 Flow of Unit Test Case . 24

4.3 CBC Encryption and Decryption . 25

4.4 CTR Encryption And Decryption . 26

4.5 Unit Test Case Flow of AES Encryption 27

4.6 Unit Test Case Flow of AES Decryption 27

4.7 Encrypted Text using OpenSSL . 27

4.8 Decrypted Text using OpenSSL . 28

4.9 Flow of RSA Test . 29

4.10 Flow of Network Test . 31

4.11 Demo Code for Wrapper Function . 32

4.12 Output of Wrapper Function . 33

viii

4.13 Log Results . 34

ix

Abbreviations

IoT Internet of Things

RSA Ron Rivest, Adi Shamir and Leonard Adleman

SHA Secure Hash Algorithm

AES Advanced Encryption Standard

PKI Public Key Infrastructure

RA Registration Authority

CA Certicate Authority

CRL Certicate Revocation List

REST REpresentational State Transfer

ECDSA Elliptic Curve Digital Signature Algorithm

RV Rendezvous

OV Ownership Voucher

TEE Trusted Execution Environment

TA Trusted Application

UUID Universally Unique IDentifier

CBC Cipher-Block Chaining

x

List of Tables

1.1 Scale Down Outlook of IoT Device . 3

3.1 Pin Connection of UART with Raspberry pi3 22

4.1 Overview of AES Encryption Test Case 28

4.2 Overview of RSA Verification Test Case 30

4.3 Overview of Network Test Case . 31

xi

Contents

Declaration iii

Certificate iv

Acknowledgements vi

Abstract vii

Abbreviations x

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.2.1 Reason of Scale Down Approach 3

1.3 Objectives . 4

1.4 Problem Statement . 4

1.5 Thesis Outline . 4

2 Literature Survey 5

2.1 Security in IoT . 5

2.1.1 Need of Security . 5

2.1.2 What is Cryptography? . 5

2.2 Digital Signatures and Digital Certificates 6

2.2.1 Digital Signature . 6

2.2.2 Digital Certificate . 7

2.3 Cryptography Algorithms . 8

2.4 Public Key Infrastructure . 10

xii

2.4.1 Components of PKI . 10

2.5 Security Model . 12

2.6 Trusted Execution Environment (TEE) 12

2.6.1 Open-source Portable Trusted Execution Environment(OP-TEE) 12

2.7 RESTful API . 15

3 Zero Touch Secure Device On-boarding 17

3.1 Working of Application . 17

3.2 Work Flow of Device . 18

3.2.1 Phase 1 : At the Time of Device Manufacturing 18

3.2.2 Phase 2 : Before Installation . 18

3.2.3 Phase 3 : During Installation . 18

3.3 Flow of TEE . 20

3.4 Test-Bed Setup . 21

3.4.1 Software . 21

3.4.2 Hardware . 21

4 Validation of Unit Test Case 23

4.1 Architecture of Unit-Test Case . 23

4.1.1 Sequence of Unit Test Case . 24

4.2 Implementation of Unit Test Case . 25

4.2.1 Cryptography Unit Test Case Suite 25

4.2.2 Signature Verification Test Case 28

4.2.3 Network Test Case Suite . 30

4.2.4 Implementation of Wrapper Function Test 31

4.3 Results . 33

5 Conclusion and Future Work 35

5.1 Conclusion . 35

5.2 Future Work . 36

Bibliography 38

xiii

Chapter 1

Introduction

1.1 Background

The phrase “Internet of Things” was invented by Kevin Ashton in 1999.[1] He came up

with the idea of communicating things with radio receiver using RFID tag.

Internet of Things(IoT) is a process of enabling the things to communicate with each

other, by transferring and receiving information through network (wireless or wired)

using technologies (e.g. Wifi, Bluetooth, Zigbee etc.) to transfer and receive the informa-

tion, that requires less human intervention. The major components of IoT are: things,

actuators, sensors and storage component.

The major components of IoT are: things, sensors, actuators and storage component-

Things here refers to smart things which can be devices or objects, equipped with elec-

tronics which are having the capability of computing and communicating. These smart

things can be discovered, communicated, computed and controlled, over internet. Sen-

sors forms an integral part of IoT, sensors collect data to perform the task as required

by IoT application. It may vary according to the application used. The sensors can

be proximity sensor, touch sensor, humidity sensor, temperature sensor, pressure sensor,

accelerometer, etc. Micro-electro-mechanical systems (MEMS) are computer chips that

includes both sensors and actuators. A sensor is a device that transforms the functional

energy into electrical signals while, an Actuators is a device that transforms electrical

signals into functional energy. Actuators analyzes the data which is collected and respond

accordingly. [2] IoT connects a large number of devices that produces a large amount of

data. Storage platform is required, so that data can be stored which can be used further

1

for analysing, storing and triggering the appropriate actions, which can be done using

cloud based storage. One of the main objective of Internet of Things is to connect with

all the existing different fields. Some of the applications of IoT in different sectors are as

follows:

• IoT in industry : It can be used for monitoring temperature,toxic gas and oxygen

levels inside industrial plants to ensure the safety of workers and goods.

• IoT in residence : IoT can turn the home into the smart home, by sensing and

responding to the activities, by enabling objects/things to communicate with each

other, with out human intervention. A smart home can be controlled easily with a

smart phone or laptop.

• IoT in agricultural : It can be used to analyze crop environment and the method

to improve the efficiency of decision making by analyzing harvest statistics.[3]

• IoT in health care : In health care IoT is used to check and keep a track upon the

health conditions of patients,also when they are at remote location.

1.2 Motivation

IoT is becoming a vital part of human life but there have been many challenges that have

started cropping up such as scaling, consistency, robustness and security. Scaling and

security of Internet of Things is an important aspect that can not not be overlooked as

typical scenarios.

Earlier reports of Cisco/IBM claimed that there will be 50 billion devices by 2020,[4] but

according to the recent reports the reality is no where close to reaching those numbers.

The recent research reports predicts around 30 billion devices in the same time frame. So,

what might will be the reason of scale down?? The table 1.1 shows the report scale-down

outlook.

2

Year Source Report
2010 IBM ”A world of 1 trillion connected devices”

by 2015[5]
2011 Ericsson ”50 billion connected devices” by 2020[5]
2014 Intel Infographis ”31 billion devices connected to internet”

by 2020 [5]
2018 Iot Analytics Research It will reach ”22 billion devices connected

to internet” by 2020[5]

Table 1.1: Scale Down Outlook of IoT Device

1.2.1 Reason of Scale Down Approach

• Real-time issues: includes provisioning and management of devices

When the IoT device reaches the customer site, the on-boarding process for each

device mostly takes 20 to 30 minutes which involves manual provisioning, coordi-

nation among the technicians, network and security operations. This is costly and

time consuming , which is holding the industry back from the promise of more than

tens billions of devices.

• Security issues: include data privacy, tracing ownership during distribution, secure

communications from edge to cloud.

There are chances that malware may enter into the IoT network as it connects a

lot of devices. The integration of middleware, machine-to-machine communication,

APIs etc. may lead to new security risks and complexity.

An attacker can take the advantage of

- weak, guessable or hard coded passwords

- lack of secure update mechanism

- insecure data transfer

These malicious programs can perform a variety of different functions such as

- deleting and stealing sensitive data

- secretly monitoring users

- altering the data or computing functions

- can flood targeted resource, resulting the server to go down

3

1.3 Objectives

The objective of the thesis to make the on-boarding process of IoT device secure and

automatic by cutting down the installation time to bring IoT devices online in seconds

rather than hours. To simplify the installer’s role, and eliminate poor security practices,

such as shipping default passwords.

1.4 Problem Statement

Validation of security and network architecture used in zero-touch device on-boarding.

1.5 Thesis Outline

This report follows a standard outline which is divided into multiple chapters. Chapter-

1, contains the introduction of the project which describes the background, motivation,

problem statement and objective of the thesis. Chapter-2, contains literature review,

which describes the need of security in IoT. It also describes some of the cryptography

algorithm, PKI Infrastructure, working of TEE and brief about REST API. Chapter-3

describes the flow of the application with the block diagram and also it describes the

working of trust zone in device. Chapter-4 presents the implementation and flow of the

project done. Chapter-5 discusses the conclusion and future work.

4

Chapter 2

Literature Survey

2.1 Security in IoT

2.1.1 Need of Security

There are already billion of devices connected on the internet, with the technology being

used in various sectors like industrial, agricultural, transportation, home automation,

healthcare etc. but “behind the scenes” it is possible that data collected are used by the

third party or enterprise as part of their managed services models. Most IoT devices can

serve as entry points into a home or corporate network, exposing families and companies

to significant data breach risk. For industrial IoT, those entry points can provide hackers

with access to private servers. It’s not just corporate sensitive information at risk many

of these business servers contain sensitive personal data of consumers, which could be

jeopardized in attacks and leave unwitting customers open to theft. [6]

2.1.2 What is Cryptography?

Security in IoT is an major aspect in today’s era which can be achieved by cryptography.

Cryptography is an art of hiding messages by communicating with codes, so the infor-

mation can be read and processed only by the in-tenders and hackers can not decode it.

In cryptography the pre-fix ”crypt” means ”hidden” and the suffix ”graphy” stands for

”writing.”[7] Encryption can be further divided into-

• Secret Key Cryptography / Symmetric Encryption:

A single key is used for both encrypting and decrypting messages, the sender en-

crypts the clear/plain text with the key, and sends the encrypted text to the recip-

5

ient. The receiver uses the same key to decrypt the message , a single key(shared

by receiver and sender) is used to both encrypt and decrypt the message it is called

as secret key encryption .[8]

• Public Key Cryptography / Asymmetric Encryption:[8]

A pair of keys are used for encryption and decryption of messages. Sender and

receiver can communicate securely through a communication channel link with no

need to exchange the key. There are two keys, one of which is public key which is

available to anyone and the other is private key. The sender(X) uses receiver (Y)

public key to encrypt the message and only the receiver(Y) with its private key can

decrypt the message.

• Hash function:[9]

It is a mathematical function which converts a input value into other compressed

numerical value. It does not uses keys for encryption and decryption of data. The

input of the hash function can be of any length but its output is always of fixed in

length. Hash value is also known as message digest. This algorithms are used to

provide a digital fingerprint of a file’s content, which ensures that the file has not

been altered by an intruder or virus.

2.2 Digital Signatures and Digital Certificates

2.2.1 Digital Signature

Digital Signature[10] ensures that contents of a message have not changed. In this process,

data is hased using hash function and then encrypted with the private key of sender. The

sender sends encrypted message and the data to receiver. The receiver decrypts it using

the public key and received hash is matched with the sender data which is hashed by

receiver. Figure 2.1 shows the flow of digital signature.

6

Figure 2.1: Flow of Digital Signature

2.2.2 Digital Certificate

Digital Certificate[10] is a digital document that proves the ownership of the public key,

it ensures that during the transmission the content of message is not altered. It is also

known as public key certificate. The digital certificate includes, certificate serial number,

public key, validity of certificate, identity of the owner, the digital signature of the issuer

that has verified the certificate’s contents. Fig 2.2 shows how a digital certificate lokk

like.

Figure 2.2: Digital Certificate

7

2.3 Cryptography Algorithms

In cryptography variety of conventional algorithms are available. They are RSA, AES,

ECDSA, etc.[8] Some of the available cryptography algorithm are explained next-

Advanced Encryption Standard (AES) is widely adopted symmetric encryption algo-

rithm, is based on different key sizes [128 bits (9 iterations), 192 bits (11 iterations), and

256 bits (13 iterations)].

Figure 2.3: Encryption and Decryption in AES

As shown in figure 2.3 AES encryption and decryption consists of 3 round : the initial

round , the main round and the final round.

-Add Round key - In this step, the initial key and the message are XOR (Exclusive-ored).

-Sub bytes - As per the pre-determined table each byte is substituted.

8

-Shift Rows - In this stage each row is shifted to left.The first row remains as it is, it is

not shifted, the second row is shifted by one and so on. This is illustrated in the Figure

2.4.

Figure 2.4: Shift Rows in AES

-Mix Columns - In this stage the matrix is split-ted by columns, it performs matrix mul-

tiplication.

ECDSA and RSA are algorithms used by public key cryptography systems and are

collectively known as digital signature algorithms. RSA algorithm, stands for Ron Rivest,

Adi Shamir and Leonard Adleman, it consists of a public key and private key and consists

of large prime numbers. It is a three step process that involves key generation, message

encryption and message decryption. The algorithm is as follow [11]

• Key generation:

The block diagram 2.5 illustrates the RSA Key Generation

(1)Firstly, generate two random prime numbers p and q

(2)Calculate n = p*q and z = (p-1) (q-1)

(3) Choose the number e such that, e is less than n, which has no common fac-

tor(other than 1) with z .

(4)Find the number d such that (ed - 1) is exactly divisible by z.

(5) Keys generated using n, d and e : Public Key is (n,e) and Private key is (n,d).

9

Figure 2.5: Block Diagram Illustrating the Key Generation of RSA Algorithm

• Message Encryption : The sender uses the following method to encipher the mes-

sage M. Cipher text C=M e Mod(n) where C is the cipher text generated after

encryption.[11] For Example

C=35 Mod(35)

=243 Mod(35)

=33

• Message Decryption : The receiver uses the following method to decipher the cipher

text C. The original message M = CdMod(n).[11]

The other method to create digital signature is through ECDSA. Elliptic Curve

Digital Signature Algorithm (ECDSA), is used to create a digital signature of data.

It is used for verifying its authenticity by making sure that the data was not tam-

pered.

For signing a file, a private key and the hash of the file is combined together to

give the signature. A hash is a mathematical equation that is applied on the data

to give a fixed length of unique data as an output. So if the message (the file) is

tampered in the transmission then the hash also be changed.

2.4 Public Key Infrastructure

The set of hardware, software, people, policies and procedures needed to create, manage,

store, distribute, and revoke PKCs based on public-key cryptography.

In PKI trust comes from third party that is certificate authority.[12]

2.4.1 Components of PKI

The user generates public and private keys and sends the public key to the Certificate

Authority. Figure 2.6 shows Public Key Infrastructure. PKI consists of 4 elements-

10

• Registration Authority (RA) :Validates the registration of a digital certificate and

verifies that requester has a private key which is associated with the public key and

submits the certificate request to the CA.[12]

• Certificate Authority (CA) : Verifies the identity of entities and issues and revokes

the digital certificates. CA inserts the issuer public key into the certificate.

• Certificate Repository :It stores keys, certificates and Certificate Revocation Lists

(CRLs). Key recovery is an advanced function required to recover data or messages

when a key is lost .[12]

Figure 2.6: Public Key Infrastructure

11

2.5 Security Model

The Security Model is based on -

• Confidentiality: This can be defined as the secure method for keeping data secret

and safe during transmission of information over networks so that unauthorised

party can not access the data. Confidentiality can be ensured by encryption algo-

rithms.

• Integrity: The concept of data integrity is that data must be accurate and should

not be modified while transmitting.It makes sure that data is authentic.[13] Integrity

of data is ensured by message hashing.

• Availability: It is the ability of a user to access information from a specific location

in the correct format.[13]

• Non Repudiation: The basis of non-repudiation is that the sender cannot disown

any information sent at a later time. It offers non-repudiation through digital

signatures.

2.6 Trusted Execution Environment (TEE)

It is a tamper-resistant processing environment that runs on a separation kernel. It

guarantees the authenticity of the executed code, the integrity of the run time states

(e.g. CPU registers, memory and sensitive I/O), and the confidentiality of its code, data

and run time states stored on a persistent memory. In addition, it shall also be able to

provide remote attestation that proves its trustworthiness for third-parties. The TEE

resists against all software attacks as well as the physical attacks performed on the main

memory of the system.[14]

2.6.1 Open-source Portable Trusted Execution Environment(OP-

TEE)

It is an open source implementation of Trusted Execution Environment, it consist of

secure world and normal word. The client application is running on Linux and trusted

application is running on TEE. It uses shared memory to send and receive messages

12

between client application and trusted application.OP-TEE is basically using Arm Trust

Zone technology. The main design goals for OP-TEE are: [15]

• Isolation - It must provides isolation from the non-secure world and should ensure

data and code confidentiality and integrity .Its main objective is that it to execute

the code in complete isolation with respect to other applications which are executing

in the same device.

• Small footprint - the size of TEE should be small so that it can reside easily inside

on-chip memory as in Arm based systems.

• Portability - TEE can be easily plug-gable to different hardware and architecture

like multiple client OS or multiple TEEs.

An interrupt occurs whenever there is switching from normal world to secure world

or vice-versa .It switches through Secure Monitor Call (SMC).An interrupt is sig-

naled by the ARM GIC (Generic Interrupt Controller).

There are two types of interrupt :

(a) Native interrupt - The interrupt is to enter the secure world (FIQ)

(b) Foreign interrupt - The interrupt is to enter non-secure world (IRQ)

Each world has own interrupt exception vector. When an interrupt is in same world, it

directly handles the interrupt.When an interrupt is in different world, it switches a context

(by Monitor vector) to the corresponding world first and then handles the interrupt.

Figure 2.7 shows the flow of IRQ and FIQ

13

Figure 2.7: Overview of Interrupt Handling

Entering the Secure Monitor :

On every context switching, it saves a state of current world and restores a previous state

of another world. On entry for fast SMC it blocks all IRQ/FIQ exception until it returns

back to normal world and for Standard SMC will execute the requested service with

interrupts unblocked, it assigns a trusted thread to the SMC request. The trusted thread

stores the execution context of the requested service. This context can be suspended

and resumed as the requested service executes and is interrupted. The trusted thread

is released only once the service execution returns with a completion status. The flow

diagram 2.8 shows SMC entry to secure world .

The monitor manages all entries and exits of secure world. To enter secure world from

normal world the monitor saves the state of normal world and restores the previous state

of secure world. Then return from exception is performed and the restored secure state

is resumed.

14

Figure 2.8: SMC Entry to Secure World

2.7 RESTful API

The security in devices/things is a major concern in IoT, which requires an end to end

encryption of data to secure data in transit.

API allows to expose the IoT connected device to client or owner in a secure manner

which can be accomplished by using RESTful APIs. REST stands for REpresentational

State Transfer. It was first introduced by Roy Fielding in year 2000. It acts as a medium

between the system which is used to get the data and to apply operations on that data

using HTTP formats like XML and JSON.

Each URL is request and the data which is send back to request is an response There are

four important data transactions in any REST system and HTTP specification: POST

(create), GET (read), PUT (edit) and DELETE. GET is a read-only operation, it can

be repeated without affecting the state of the resource and can be cached. PUT is used

to replace/update a resource.(create if doesn’t exist) DELETE is used to remove a re-

source. POST is used to create a new resource.(e.g. Twitter post)[16]

The data through REST API can be send in multiple formats such as HTML, XML,plain

text, YAML, and JSON. Java Script Object Notation(JSON) is lightweight, understand-

able data-interchange format. It is compatible to any programming language, and easy

15

to read and write .

The figure 2.9 shows and example of REST API using JSON format.

Figure 2.9: REST API using JSON Format

16

Chapter 3

Zero Touch Secure Device

On-boarding

The project aims to connect the device securely, to the owner’s platform without the

human intervention. The flow consist of exchange of messages between device, RV server

and owner(client) server.

3.1 Working of Application

The manufacturer of the device inserts keys and credentials of the device. When the

device is powered on the customer’s site the device automatically connects with the

RV server. The RV Server has the information of the owner’s address and passes the

information to the device. The device connects to owner server. The owner and device

verifies itself, creates an encrypted channel and then the information is transferred to

device. The main entities of the application are as follows: [17]

• Manufacturer :

It is the manufacturer of device which has details of the devices. It sends the details

of the device once, it gets invoked.

• Device :

The device consists of hardware and software.It also includes Trusted Execution

Environment TEE which is a secure area inside a main processor. It runs in parallel

of the operating system, in an isolated environment. It guarantees that the code and

data loaded in the TEE are protected with respect to confidentiality and integrity.

17

• Rendezvous Server :

It is a service on internet or centralized medium between the device and owner’s

cloud

• Owner Client/Cloud :

It is a service that is able to prove ownership to the device using an Ownership

Voucher and a private key.

3.2 Work Flow of Device

As shown in figure 3.1, the work flow of the device can be described in 3 phases:

3.2.1 Phase 1 : At the Time of Device Manufacturing

– The processor contains a unique hardware root of trust key (ECDSA)

– The Original design manufacturer inserts credentials into the device.

– The Manufacturing Toolkit creates a digital Ownership Voucher (OV) that is

sent to the new device owner

3.2.2 Phase 2 : Before Installation

– Step 1: The OV is passed to target IoT platform

Ownership Voucher is used to establish trust, it is a digital document which

is used to transfer digital ownership credentials from owner to owner without

the need to power on the device.

– Step 2: The new device is registered in the Rendezvous Service together with

the URL for the target IoT platform

3.2.3 Phase 3 : During Installation

– Step 3 : When the device is powered on, it first connects to RV server and it

authenticates the device and provides the address(URL) of the target owner.

– Step 4 : The target owner and the device verifies themselves using the root of

trust and Ownership Voucher.

18

– Step 5 : The provisioning payload for the target is transferred to the device.

This can be credentials such as passwords or can be a complete platform agent.

Figure 3.1: Block Diagram

19

3.3 Flow of TEE

TEE is the core of the device, it provides confidentiality of application and data which

has isolated execution environment. Sensitive data is stored in the TEE ARM released

trust zone technology which provides a system level security .[15] Figure 3.2 shows the

flow of TEE.

Figure 3.2: TEE Flow

• Client Application(linux) invokes the TEEC InitalizeContext API to initialize TEEC

context variable.

• After initialisation, TEEC OpenSession API opens a session with Trust Applica-

tion(TA).The session is used to transfer parameter between Client Application(CA)

and TA. The trust zone finds and load TA which is determined by Universally

Unique IDentifier(UUID).

• When TEEC InvokeCommand is called, a context switch occurs and the TA for

which the session was opened will receives the data in its corresponding function

named TA InvokeCommandEntryPoint. The parameter params contains all infor-

mation sent by the CA.

• TEEC Close Session is used to release a session.

20

3.4 Test-Bed Setup

3.4.1 Software

Operating system used is Ubuntu 18. ARM based tool-chain has been used, as sup-

ported by OP-TEE .The compiler version used for testing is gcc-arm-8.2-2018.08-x86 64-

aarch64-linux-gnu. For validation purpose programming language C has been used. To

communicate with TEE GlobalPlatform API are used. To build the Trusted Application

in secure world it should include Makefile, sub.mk and header file. Make file consists of

configurations and cross compiler information. sub.mk consists of list of the source files

required to build. Header file is specific ANSI-C header file.[15]

3.4.2 Hardware

Hardware used is Raspberry Pi 3 Model B,[18] the reason of choosing this hardware is

TEE can be easily ported to it. Broadcom BCM2737 SoC which is present in Raspberry

Pi 3 board has a TrustZone isolation and protection for sensitive information such as

cryptographic keys and data. To access the serial console, connect a USB to TTL Serial

Cable to the device UART pins as shown below. Figure 3.3 shows the connection of

UART with Rpi-3. 3 pins of Rpi3 are required for using UART:[15]

GND pin: connect to ground of the circuit.

RX pin: to receive the incoming messages from the system.

TX pin: to transmit messages to the system

Figure 3.3: Connection of UART with Raspberry pi3

21

UART pin Signal Rpi3 pin
Black (GND) GND 6
White (RXD) TXD 8
Green (TXD) RXD 10

Table 3.1: Pin Connection of UART with Raspberry pi3

Table 3.1 shows connection of UART with Rpi3. On the system we can open up

connection to the USB serial device through a terminal program, such as gtk-terminal.

The serial port parameters for the console are as follows:

Port :/dev/ttyUSB0

Baud Rate : 115200

Data Bits : 8

Parity : None

Stop Bits : 1

22

Chapter 4

Validation of Unit Test Case

4.1 Architecture of Unit-Test Case

A unit test is used to verify the sub-functionality of the application which is independent

from other parts, it ensures that every single part of the application works correctly. TEE

based architecture is used implement unit test case. OP-TEE requires both hardware

and software support. For hardware purpose raspberry pi (ARM based processor) is used

to achieve TEE using Trust-Zone technology. The below figure 4.1 shows the flow of

development of unit test case:

Figure 4.1: Flow of Development of Unit Test Case

The flow of unit test case of the op-tee environment starts with TEEC InitializeContext()

23

which initialize a context between client to TEE. The normal world (client) creates a

session with Trusted Application with TEE OpenSession() Global Platform API. Once a

session is created function test case() is called, for each test case TEE InvokeCommand()

is called, which triggers TA InvokeCommandEntryPoint() in host side(secure world) that

is trust zone. This Global Platform API calls test case() in host side which executes

the test case. In unit test case suite valid and invalid parameters are send to function

and then its return type are compared . That is expected value is compared with the

return value if both are same test is passed else failed. The value is returned to the

client side(normal world). Print log() function compares the return value received from

the host side and according to which log is generated with the unit-test case name and

its status. If the return value is 0, test case status is passed, if the return value is -1,

test case status is failed. The normal world will print unit test name with corresponding

result.

4.1.1 Sequence of Unit Test Case

Figure 4.2: Flow of Unit Test Case

Figure 4.2 shows flow of unit test case. The unit test case suite will validate the function

by sending valid and invalid parameter to the function .

In first phase it create a test data or input values for an application it wants to

test, known as System Under Test(SUT), once the code is build. It is copied to SD

card through SD card reader. The image is flashed to Raspberry Pi3. The test case in

executed in the serial port terminal which is connected to the device (Raspberry Pi3).

The unit test case is passed if the observed behaviour is same as the expected else it fails.

24

4.2 Implementation of Unit Test Case

4.2.1 Cryptography Unit Test Case Suite

4.2.1.1 Advanced Encryption Standard

It is one of the most popular and widely adopted symmetric encryption algorithm. The

test case is executed for both mode of operations that is CBC and CTR.

• CBC (Cipher-Block Chaining) Mode : In CBC mode of encryption, plain text

is XOR with the cipher text block that was previously generated. The result is

encrypted using the AES algorithm. So, every next block depends upon the previous

one. The initial plaintext block is XOR with random initialization vector(iv).The

size of iv is same as plain text block. For decryption it is just the opposite of

encryption. Figure 4.3 shows the flow of CBC Encryption and Decryption.

Figure 4.3: CBC Encryption and Decryption

25

• CTR(Counter) Mode : In CTR mode of encryption the increasing subsequent

values of the counter are added to a nonce value (number used once) and the results

is encrypted and further XOR with the block of plain text. There is no dependency

as there is no feedback. Figure 4.4 shows CTR encryption and decryption

Figure 4.4: CTR Encryption And Decryption

AES Unit test Case Flow

[1] AES Encryption Flow

AES encryption takes clear text (original text) and based on the mode it calculates the

cipher length. If the mode is CTR the length of cipher is equal to the clear text length. If

the mode is CBC cipher length is equal to [(clear text length/block size of AES) * block

size] of AES.Once cipher length is calculated the AES encrypt API will encrypt the clear

text to cipher text. Figure 4.5 shows Unit Test Case Flow of AES Encryption. Figure

4.5 shows AES encryption.

[2] AES Decryption Flow

AES decrypt API takes the cipher text and based on the mode it calculates the clear text

26

Figure 4.5: Unit Test Case Flow of AES Encryption

length. If the mode CBC or CTR the length of cipher is equal to the cipher text length.

Once clear text length is calculated the AES Decrypt API will decrypt the clear text to

cipher text. Figure 4.6 shows AES decryption.

Figure 4.6: Unit Test Case Flow of AES Decryption

Verifying using OpenSSL

OpenSSL is a powerful cryptography toolkit that can be used for encryption and decryp-

tion of messages and files. For the validation purpose the results generated from the aes

encryption and decryption unit test case suit was compared with the openSSL. Figure

4.7 shows encrypted text using openSSL.

Figure 4.7: Encrypted Text using OpenSSL

The result generated by decryption API is compared with openSSL command by provid-

ing same parameters in both the case . Figure 4.8 shows decrypted text using openssl.

The table 4.1 shows an example of AES Encrypt Unit Test case suite in which valid and

invalid parameter are passed for validation purpose.

27

Figure 4.8: Decrypted Text using OpenSSL

Parameter/ Plain Plain Cipher Cipher Key Key Block IV Mode
Function Name Text Text Text Text Length Size
(AES encrypt) Length Length

all valid valid valid - valid valid valid valid valid valid
Clear txt
(invalid) invalid valid - valid valid valid valid valid valid
Clear txt

length (invalid) valid invalid - valid valid valid valid valid valid
Ciphertext
(invalid) - - - - - - - - -

Cipher length
(invalid) valid valid - invalid valid valid valid valid valid

Key
(invalid) valid valid - valid invalid valid valid valid valid

Key length
(invalid) valid valid - valid valid invalid valid valid valid

Block size
(invalid) valid valid - valid valid valid invalid valid valid

IV
(invalid) valid valid - valid valid valid valid invalid valid

Mode
(invalid) valid valid - valid valid valid valid valid invalid

all invalid invalid invalid - invalid in valid invalid invalid invalid invalid

Table 4.1: Overview of AES Encryption Test Case

4.2.2 Signature Verification Test Case

The signature verification test case validates the authenticity of digital messages. The

private key with the message hash is used to generate signature, which can be verified by

its corresponding public key.

28

4.2.2.1 Signature Verification using RSA

RSA is one of the most popular and secure public-key encryption methods. Figure 4.9

shows flow of RSA test. The step of the RSA verification test case are the following :

1. The first step includes to get a clear text, for validation purpose,a random text is

generated using the Global Trusted Application.

2. For verification purpose RSA key pair (public and private key) are generated.

3. The next step returns the message digest according the configuration selected(Secure

Hash Algorithm-256 or Secure Hash Algorithm-384) after that it calculates the

message-digest of the the text,with respect to the above the message digest re-

turned.

4. In the fourth step message digest is encrypted with the private RSA key which is

generated in step[2].

5. For verification purpose : (a) message digest which is used in step [3] is applied in

the text message and (b) the generated signature is de-crypted using using RSA

public key which was generated in step[2]. If both the message (a) and (b) results

are same then the signature is verified.

Figure 4.9: Flow of RSA Test

The table 4.2 shows an example of RSA Verification Test case suite in which valid

and invalid parameter are passed for validation purpose. Here key encoding used is RSA,

parameter message is encoded message.

29

Parameter/ Key Message Message Message Sign Key Key
Function Name Encoding Length Sign Length Length

(Sign Verification)

all valid valid valid valid valid valid valid valid
Key Encoding

(invalid) invalid valid valid valid valid valid valid
Protocol Version

(invalid) valid invalid valid valid valid valid valid
Message
(invalid) valid valid invalid valid valid valid valid

Message Length
(invalid) valid valid valid invalid valid valid valid

Message Sign
(invalid) valid valid valid valid invalid valid valid

Sign Length
(invalid) valid valid valid valid valid invalid valid

Key
(invalid) valid valid valid valid valid valid invalid

Key Length
(invalid) valid valid valid valid valid valid invalid

(all invalid) invalid invalid invalid invalid invalid invalid invalid

Table 4.2: Overview of RSA Verification Test Case

4.2.3 Network Test Case Suite

Network Test Case is one of the crucial validation test, as it is used to build a secure

connection between device and server. Here, RESTful API are used to transmit message

and generate operations on those data using HTTP in JSON format. There are four

major components in any REST system : POST (create), GET (read), PUT (edit) and

DELETE.

4.2.3.1 Network Unit Test Case Flow

The network setup initialise the REST Context, then it will look for the particular host

through DNS lookup table and POST the IP-address and port number to REST. It will

further connect to the network socket and the connection socket API will return the socket

handle. The messages can be send and received using send() and receive() network API.

After the transmission of message is done. The network connection is closed. Figure 4.10

shows flow of network test.

30

Figure 4.10: Flow of Network Test

The table 4.3 shows an example of Network Unit Test case suite in which valid and

invalid parameter are passed for validation purpose.

Parameter/ Socket Protocol Message Buffer Buffer Key Block
Function Name Handler Version Type Size Length Size
(Send Message)

all valid valid valid valid valid valid valid valid
Socket Handler

(invalid) invalid valid valid valid valid valid valid
Protocol Version

(invalid) valid invalid valid valid valid valid valid
Message Type

(invalid) valid valid invalid valid valid valid valid
Buffer

(invalid) valid valid valid invalid valid valid valid
Buffer Size
(invalid) valid valid valid valid invalid valid valid

Key
(invalid) valid valid valid valid valid invalid valid

Key length
(invalid) valid valid valid valid valid valid invalid

(all invalid) invalid invalid invalid invalid invalid invalid invalid

Table 4.3: Overview of Network Test Case

4.2.4 Implementation of Wrapper Function Test

Wrapper function is used to call a 2nd sub-routine or a system call. The main purpose

of wrapper function is to check errors during function calls. The figure 4.11 shows the

demo code used to check the dynamic memory location: malloc. The malloc wrapper

function[wrap malloc()] will be called in place of malloc()function. The following have

been performed in the given below code:

• Forcing the second sub-routing malloc to fail.

For this we are setting the test flag to 1. The malloc will return NULL, which will

force the malloc to fail.

31

• Calling the real malloc function

The flag is set to 0, so real malloc will be called which will return size and location

of memory allocated.

Note: after after setting the malloc flag we reset it so malloc function works correctly.

Figure 4.11: Demo Code for Wrapper Function

32

Figure 4.12: Output of Wrapper Function

The output of the above program is show in figure 4.12

4.3 Results

The results are obtained by building the C code using ARM based cross compiler in Linux

environment. Here the cross compiler is used because OP-TEE supports Arm Trust-Zone

technology. After building the code, the image is flashed in rpi-3. To access the serial

terminal USB to TTL Serial Cable is used. The test command is written in gtk-terminal

and all the unit test case are executed in one go. The log file is generated. The log files

shows the name of unit-test case suit with its results.

If the unit-test case returns 0, then the status shown is PASSED, if the unit-test case

returns -1, the status shown in FAILED. A unit-test suite consist of different functions

that are checked by passing valid and invalid parameter, if any of the functions fails -1 is

returned. Test case may fail because of the incorrect error handling in the source code,

if the flow of the unit test case is not correct or if there is a bug in source code. One of

the way of debugging the error in OP-TEE based environment is is to print messages and

its value. The total number of test case implemented is 200 and all of them were passed.

The figure 4.13 shows the example log file generated in serial port terminal.

• Development of various unit test case suite for the application. Results :

Passed : 200

Failed : 0

Not Implement : 0

Validation of the full flow of zero touch secure device on-boarding is carried out with dif-

ferent configuration, here configuration means with different public key encryption,device

attestation techniques and AES modes etc. Different combinations are used to obtain

the result. Java services of manufacturer, owner and RV server must be running in back-

ground for the transfer of messages with the device and with each other. For every new

33

Figure 4.13: Log Results

patch of code, the testing is carried out. The implementation of tests takes around 2

hours.

34

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In today’s era billion of devices are connected to internet, which requires provisioned

resulting in problem of time and security. In general, the process of on-boarding a device

takes 20-50 minute, which involves co-ordination among installation technicians, network

and security operations, that will configure the device and set the credentials to get the

device on the network which can be costly and time consuming.

The technology Zero Touch Secure Device On-board enables IoT on-boarding in seconds,

eliminating the time of provisioning. It goes through hard security checks between devices,

servers/clouds, and through the full supply chain to end customers. It quickly attests the

device and rendezvous the device to the owners IoT platform.

Validation with different configurations has been carried out to check the whole cycle and

to check the functionality of the code development of unit test case suit has been carried

out. Test case may fail because of the incorrect error handling in the source code, if the

flow of the unit test case is not correct or if there is a bug in source code. Sometimes

environment issues may also cause problem like if the package version are not as required.

Once all the test cases are passed the validation part is done, making the the application

more secure.

With the proper knowledge of the problems and solutions and little bit of experience a

success-full release can be achieved.

35

5.2 Future Work

The technology can be used with any IoT device and can be deployed anywhere. It can

be used in smart cities, it can on-board more senors for smart city management. More

over it can also be used in smart parking, reducing installation time to enable smart

remotely managed parking.

36

Bibliography

[1] P. Pande and A. R. Padwalkar, “Internet of things–a future of internet: A survey,”

International Journal of Advance Research in Computer Science and Management

Studies, vol. 2, no. 2, 2014.

[2] P. Matta, B. Pant, and M. Arora, “All you want to know about internet of things

(iot),” in 2017 International Conference on Computing, Communication and Au-

tomation (ICCCA), IEEE, 2017, pp. 1306–1311.

[3] P. Dudhe, N. Kadam, R. Hushangabade, and M. Deshmukh, “Internet of things

(iot): An overview and its applications,” in 2017 International Conference on En-

ergy, Communication, Data Analytics and Soft Computing (ICECDS), IEEE, 2017,

pp. 2650–2653.

[4] I. Bojanova, G. Hurlburt, and J. Voas, “Imagineering an internet of anything,”

Computer, vol. 47, no. 6, pp. 72–77, 2014.

[5] S. Z. Hosain, Reality check: 50b iot devices connected by 2020 – beyond the hype

and into reality, Last accessed 4 April 2020, 2016. [Online]. Available: https://

www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-

connected-2020-beyond-hype-reality-tag10.

[6] T. Sherwood, The importance of securing the internet of things, Last accessed 12

March 2020, 2018. [Online]. Available: https://www.tatacommunications.com/

blog/2018/10/the-importance-of-securing-the-internet-of-things/.

[7] M. N. Dhivya and M. S. Banupriya, “Network security with cryptography and

steganography,”

[8] A. Eskicioglu and L. Litwin, “Cryptography,” IEEE Potentials, vol. 20, no. 1,

pp. 36–38, 2001.

37

https://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
https://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
https://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
https://www.tatacommunications.com/blog/2018/10/the-importance-of-securing-the-internet-of-things/
https://www.tatacommunications.com/blog/2018/10/the-importance-of-securing-the-internet-of-things/

[9] B. Preneel, “Cryptographic hash functions,” European Transactions on Telecom-

munications, vol. 5, no. 4, pp. 431–448, 1994.

[10] T. Moses and A. O. Mancini, Method and system for notarizing digital signature

data in a system employing cryptography based security, US Patent 6,314,517, Nov.

2001.

[11] R. Minni, K. Sultania, S. Mishra, and D. R. Vincent, “An algorithm to enhance

security in rsa,” in 2013 Fourth International Conference on Computing, Commu-

nications and Networking Technologies (ICCCNT), IEEE, 2013, pp. 1–4.

[12] S. Xenitellis, “The open–source pki book,” Open CA Team, pp. 34–35, 2000.

[13] A. A. Mishra, K. Surve, U. Patidar, and R. K. Rambola, “Effectiveness of confiden-

tiality, integrity and availability in the security of cloud computing: A review,” in

2018 4th International Conference on Computing Communication and Automation

(ICCCA), IEEE, 2018, pp. 1–5.

[14] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: What

it is, and what it is not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, IEEE, vol. 1,

2015, pp. 57–64.

[15] Op-tee documentation, Last accessed 24 March 2020. [Online]. Available: https://

optee.readthedocs.io/en/latest/general/about.html#op-tee-components.

[16] R. Cummings, Restful apis and 802.1qcc, Last accessed 7 March 2020, 2016. [On-

line]. Available: http://www.ieee802.org/1/files/public/docs2016/cc-

cummings-REST-0516-v00.pdf.

[17] Intel, Iot device provosioning, Last accessed 25 March 2020. [Online]. Available:

https://www.intel.in/content/www/in/en/internet-of-things/secure-

device-onboard.html.

[18] Raspberry pi 3 model b specs, Last accessed 3 May 2020. [Online]. Available: https:

//www.raspberrypi.org/products/raspberry-pi-3-model-b/.

38

https://optee.readthedocs.io/en/latest/general/about.html#op-tee-components
https://optee.readthedocs.io/en/latest/general/about.html#op-tee-components
http://www.ieee802.org/1/files/public/docs2016/cc-cummings-REST-0516-v00.pdf
http://www.ieee802.org/1/files/public/docs2016/cc-cummings-REST-0516-v00.pdf
https://www.intel.in/content/www/in/en/internet-of-things/secure-device-onboard.html
https://www.intel.in/content/www/in/en/internet-of-things/secure-device-onboard.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

	Declaration
	Certificate
	Acknowledgements
	Abstract
	Abbreviations
	Introduction
	Background
	Motivation
	Reason of Scale Down Approach

	Objectives
	Problem Statement
	Thesis Outline

	Literature Survey
	Security in IoT
	Need of Security
	What is Cryptography?

	Digital Signatures and Digital Certificates
	Digital Signature
	Digital Certificate

	Cryptography Algorithms
	Public Key Infrastructure
	Components of PKI

	Security Model
	Trusted Execution Environment (TEE)
	Open-source Portable Trusted Execution Environment(OP-TEE)

	RESTful API

	Zero Touch Secure Device On-boarding
	Working of Application
	Work Flow of Device
	Phase 1 : At the Time of Device Manufacturing
	Phase 2 : Before Installation
	Phase 3 : During Installation

	Flow of TEE
	Test-Bed Setup
	Software
	Hardware

	Validation of Unit Test Case
	Architecture of Unit-Test Case
	Sequence of Unit Test Case

	Implementation of Unit Test Case
	Cryptography Unit Test Case Suite
	Signature Verification Test Case
	Network Test Case Suite
	Implementation of Wrapper Function Test

	Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

