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Abstract

This project aims for the verification of boundary scan architecture in any design for detecting

bugs at an earlier stage while maximizing product quality. As the technology node reduces, the

device becomes faster and the complexity of the chip increases. The reduction in feature size

increases the probability of manufacturing defects in an Integrated Circuit. Thus, it is signifi-

cant to test the IC once they are taped out. To address the testing challenges for the physical

defects, DFT (Design for test) architecture has become popular in the industry. Boundary-scan

is one of the DFT embedded in the chip to address the testing challenge between interconnects

of the chip.

Functional verification of the implemented boundary scan in the design is essential to make sure

that the design works the way it has been intended to perform. Many tools aid in the design

verification including simulation tools and test content generation automation tools dedicated to

boundary-scan. The test stimuli and testbench are generated using the Mentor Graphics Tessent

tool. The test patterns are completely derived from the BSDL (Boundary-scan description lan-

guage) file which provides a complete description of the boundary scan implemented in the

device, no other design data is used in doing so. The test patterns are validated by integrating

into the OVM (Open Verification Methodology) testbench environment dedicated to the valida-

tion of the TAP (Test Access Port) architecture. The test case covers all possible test scenarios

needed to test the different instructions of boundary-scan. This validates the boundary-scan

architecture and BSDL file at the IP (Intellectual Property) level.

The methodology is used to make all BSDL and boundary-scan validated individually executed

at the IP level so that it provides consistent verification of boundary-scan implemented at SOC

(System on Chip) level. The testbench using OVM increased the reusability and can be used at

any level of the hierarchy.
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Chapter 1

Introduction

The observation made by Gordon Moore, co-founder of Intel in 1965 known as Moore’s Law

was the number of transistors in a dense integrated circuit will be doubled every year since the

integrated circuit was invented. Moore predicted that this trend would remain for the foresee-

able future. And it is a proven law to date. A simple example of this law is progressing from

SSI to VLSI.

Advancements in Semiconductor technology have lead Integrated Circuits towards higher speeds,

smaller physical dimensions, and increasingly complex design functions integrated into a single

device. The advancement in technology is highly motivated by the constant need in real time

applications, performance enhancements, and making this world a better place to live. Nowa-

days, the demand for the internet of things, autonomous vehicles, machine learning, artificial

intelligence, and internet traffic is growing exponentially, which acts as a driving force for scal-

ing down transistors below the existing 7nm node for higher performance. There are several

challenges with the reduction in technology node. Along with this comes the challenge to test

this dense Integrated Circuits.

The reduction in feature size increases the probability of the manufacturing defect in an IC

which will result in a faulty chip. A very small defect can result in a faulty transistor or inter-

connect. The presence of a small defect in a transistor or interconnect can result in a failure of a

complete IC. These defects during the manufacturing process are unavoidable, so plenty of IC is

suspected to be faulty. So, testing is needed to guarantee fault free products. It is also essential
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to test a component at various stages like chip level, board level, system level. A general rule

of 10 states that the cost of detecting faulty IC increases as we move from every stage i.e from

chip level to board level to system level.

Testing involves IC testing, PCB testing, and system testing and during operation of the system

also. Testing includes finding faulty devices as well as increasing manufacturing yield. VLSI

testing is important to designers, product engineers, test engineers, manufacturers, and end-

users. Testing consists of applying the test stimulus to the inputs of the DUT (Design Under

Test) and analyzing the output responses. Boundary Scan inserted in logic provides a scan path

through all Input/Output pins of IC to assist in testing the interconnections of PCB. Figure 1.0.1

shows the basic approach of testing.

Figure 1.0.1: Basic Approach of testing

1.1 Motivation

• Finer packaging geometries and switch to new surface mounting technology made bed-

of-nails test fixtures incapable of accessing nodes for testing. Boundary Scan Architecture

solves the testing problem of interconnections between various device at chip level, board

level or system level.

• Boundary Scan is found in almost every design and used to test the interconnects on the

Printed Circuit Board. This addition of architecture in the design needs to be verified as

the cost of finding bug increases after every stage of chip development.

• The motivation of this project is to understand thoroughly IEEE Standard 1149.1 Test Ac-

cess Port and Boundary-Scan Architecture, IEEE Standard 1149.6 Boundary-Scan Test-

ing of Advanced Digital Networks.
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1.2 Objective

• The core objective of this project is to verify architecture of boundary scan implemented

in any chip at the IP level.

• The project will involve verification of Boundary Scan Architecture using OVM based

test bench environment with DUT specific initialization sequences.

• Learning of tool features used for the verification of Boundary Scan.

• This also includes the generation of test patterns used to test the Boundary Scan Archi-

tecture integrated at the IP level.

1.3 Overview of Thesis

The thesis comprises of literature survey for the boundary scan. Chapter 3 contains the descrip-

tion of the boundary scan architecture, various instructions, additional instructions supporting

boundary scan for advance networks. Chapter 4 describes the implementation of the method-

ology used for the purpose of boundary scan verification. Chapter 5 contains results and dis-

cussion from the RTL simulations for various test. Lastly, Chapter 6 contains conclusion drawn

from the project.

The thesis comprises of an in-depth description of Boundary Scan Architecture and explaining

TAP Controller and its state machine. It also contains the explanation of individual tests which

includes all instructions described by the 1149.1[1] and 1149.6 standard[2].
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Chapter 2

Literature Survey

2.1 Digital Test before Boundary Scan

In-circuit testing was used to access internal nodes of an IC (Integrated Circuit) to check for

joints, shorts, open to check whether the circuit is fabricated correctly. In-circuit testing is an

example of white box testing. It is performed with bed of nails type test fixture. It was showing

a reduction in effectiveness due to the loss of test points on products. In classical in-circuit test

stimulus and responses are received from the board and the test through probes on a fixture con-

necting the tester to the board, test in this way the in-circuit test can measure discrete devices

and test IC’s. Challenges faced by In-Circuit testing are:

The IC packaging technology was dominated by dual-inline, through hole mounted packages.

So every board signal was visible on the bottom of the board. It was easy to arrange In-Circuit

nails to target the pins of the IC themselves. By the advent of SMT (Surface Mounted Technol-

ogy) devices and finer packaging technologies, access of all nodes to the In-Circuit nails became

difficult. An alternative was needed for the testing of devices. Boundary Scan contributes to

solving this problem.
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Figure 2.1.1: In Circuit test with access of full nodes

2.2 Introduction to Boundary Scan

Testing a standalone device is comparatively easy because all Input and Output pins are con-

trollable and observable with the test equipment. Once the device is assembled on the Printed

circuit board, the complexity of testing increases. The conventional in-circuit testing using the

“bed-of-nails” testing method in which testing relies on probing test pins onboard and vias has

already encountered problems in dealing with multiple layer boards. With the advent of surface

mounting packages and multiple chip modules, this method becomes infeasible as no through

hole pins are available for probing.

In the mid-1980s, a group of test engineers from various European electronics system com-

panies worked together to seek possible solutions to the problem. This group, known as the

JETAG (Joint European Test Action Group), attained a solution to approach this problem. They

concluded to chain all the boundary input and output pins of the device into a shift register

and used a concept similar to scan design to make input-output controllable and observable.

Later in 1988, the group was accompanied by other more representatives from North Ameri-

can companies they had also been working on this problem and came to a similar conclusion.

The merged group was renamed as JTAG (Joint Test Action Group). Through the works of

the group, the concept of “boundary scan” was formally converted into a test architecture and
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a set of associated design rules were approved by the IEEE as a test standard (Std. 1149.1)

in 1990. Since then, the standard has been applied by most electronics companies designing

large Integrated Circuit. Today, almost all general-purpose CPU, DSP, FPGA, and various ap-

Figure 2.2.1: Basic boundary scan register cell

plication specific designs comply with the 1149.1 standard and the family of 1149. Because

boundary scan provides a simple and efficient protocol for data communication, this standard

has also been employed in many other applications, including power management, embedded

instrumentation control, clock/PLL control, debugging/diagnosis, verification, and chip recon-

figuration.

The Boundary Scan technique involves a scan based design forming a shift register like struc-

ture for every Input Output pads present in a chip. Each component pin present at component

boundaries are stitched in serial register format is controllable and observable using scan testing

fundamentals.

Figure 2.2.1 shows an example of a boundary-scan cell that can be applied for input/output pins

of the IC. Depending on the control signal input applied to the multiplexers, data can be either

driven from the register through the Parallel out port of the cell (into the core of the component

design) or loaded into the scan register from the Parallel in port.(e.g., the input pin).

This boundary scan cells are connected at each input output pin of the IC and form a shift reg-

ister structure around the boundary of the design. This path is given with appropriate control

signals and a clock. Within a board containing several IC, the boundary scan registers from the

single IC’s can be connected to form a serial single path with other IC’s. Figure 2.2.2 shows the

6



complete path of Boundary Scan implemented at the board level.

Boundary Scan Cell

Serial Data in

Serial Data Out

Serial Test Interconnect

System Interconnect

Figure 2.2.2: Boundary scannable board Design

2.3 Evolution of Boundary Scan

Standard 1149.1[1] explains a general-purpose boundary-scan implementation for digital chips.

Several different boundary scan standards are serving different objectives. Boundary scan com-

prises of a family of test methodologies providing a comprehensive range of test problems. This

includes chip level to system level, from system logic core to interconnections, from the digital

circuitry to analog circuitry to mixed-signal circuitry, and of ordinary digital designs to designs

compatible with very high speeds capability. Table 2.1 shows the family of standards identified

as IEEE 1149.x standards supporting different applications. Standard 1149.1[1]is normally re-

ferred as boundary scan standard was approved by IEEE in 1990. A complete set of a language

known as BSDL (Boundary Scan Description Language) was motivated for standardization and

increasing demand for the boundary scan. Thus, BSDL also became a part of the standard after

the first revision of the boundary scan standard (1149.1a). The revision of 1149.1[1] came in

2001 merging both standards.
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Number Objectives Status

1149.1 Testing of digital chips and interconnects between chips Std. 1149.1-2001
1149.2 Extended digital serial interface Discontinued
1149.3 Direct access testability interface Discontinued
1149.4 Mixed-signal test bus Std. 1149.4-1999
1149.5 Standard module test and maintenance (MTM) bus Std. 1149.5-1995
1149.6 High-speed network interface protocol Std. 1149.6-2003

Table 2.1: 1149 family of Boundary Scan

The 1149.2 extended digital serial subset discontinued did primarily aimed at ASICs and with

the high speed test capability due to the argument that some of the features could be covered in

scan design. The 1149.3 Direct access testability interface was aimed at direct access of inter-

faces of the chip, as it overlapped with the 1149.5, it was also discontinued.

Standard 1149.4 aims boundary scan testing for the chip containing Analog I/O. It defines ar-

chitecture compatible with analog input and output is introduced to as an analog boundary

scan. Standard 1149.6[2] is an extension of 1149.1[1] for standardization of boundary Scan

supporting high speed I/O chips. This includes networks that are single-ended, differential, AC

coupled. These both standard are gaining more popularity than any other. The thesis is based

on these two standards only.

2.4 Test Considerations of Core Based Design

In the era of SOC, standard gate level or cell-based design are not sufficient. The primary

building blocks of the system are formed by core based design methodology. As in Figure 2.4.1

shown a typical SOC design which contains DSP, CPU, ALU, memory modules like RAM

and ROM, some glue logic, ASIC cores, IPs, interconnections modules. Testing problems

associated with this complex design increases as the complexity of the design increases.

A SOC integrator has to consider how to develop a test for cores which can or cannot be pro-

vided by the same vendor, can be in different form i.e hard or soft cores. Many verification

problems are found in such a complex system that is not caught at the IP or sub-block level.

Automation tools can be the greatest help in generating tests and circuitry required to test the

system. Individual IPs can be verified and their corresponding BSDL file can be made error-
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Figure 2.4.1: Core based SOC Design

free. So at the integration level at SOC, the integrator will not have to face unnecessary debug in

verifying bugs found in IP. Test content generated from the automation tool can aid in verifying

IP and their BSDL. So the top-level BSDL created from the individual IPs will be error-free.
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Chapter 3

Boundary Scan

3.1 What is Boundary Scan

Boundary Scan is a testing standard. It is a standard set of the design rules which are imple-

mented primarily at the IC. It also impacts on various product life cycle development as:

• At the Integrated Circuit level, it supports (BIST) Built-in Self Test.

• At the Board level, it supports the testing of interconnections of different IC integrated at

PCB.

• At the system level, it supports testing of higher-level integration from modules to sys-

tems.

3.2 Boundary Scan Architecture

The basic architecture implemented at Integrated Circuit level is shown in the figure 3.2.1. The

Boundary Scan is divided into four main hardware elements:

• A TAP (Test Access Port), consists of four mandatory pins: TDI (Test Data In), TDO

Test Data Out, TMS (Test Mode Select), and TCK (Test Clock) and one optional pin,

TRST* (Test Reset).

• A TAP Controller

• An IR (Instruction Register) and Instruction Decoder
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Figure 3.2.1: Simplified architecture of boundary scan

• Other TDR (Test Data Registers). Mandatory are boundary scan register, bypass register,

other optional can be device ID register, user defined registers.

The TAP is a general purpose port available that provide access to boundary scan functions into

a component. Dedicated pins are used for the boundary scan which is not used by any func-

tional logic. The TAP controller is a 16-state FSM upon which boundary scan transactions rely

on. Each instruction to be carried out by the boundary scan architecture must be serially loaded
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into the IR through the TDI (Test Data Input) pin. The instruction decoder decodes based on

instruction loaded in the Instruction register. The test data registers store system related opera-

tion or some test data.

A set of test instructions is provided like BYPASS, SAMPLE, PRELOAD, and EXTEST which

are mandatory ones and optional ones include HIGHZ, CLAMP, INTEST, IDCODE, USER-

CODE, and RUNBIST.

3.2.1 Test Access Port

The boundary scan register and other test data registers are accessed through a standard inter-

face, JTAG TAP interface. The standard implies presence of mandatory four test pins: TDI,

TDO, TMS, TCK and one optional pin TRST* each available through a dedicated device pin

which maynot be shared with any other function.

3.2.1.1 Test clock input

The TCK(Test Clock) is the clock input for all operations carried by boundary scan. The dedi-

cated TCK is independent of the functional clock so that shifting and capturing of test data from

one chip to another onboard can be carried out properly. Test signals respond on both the rising

edge or falling edge of the TCK.

3.2.1.2 Test data input

Test data input (TDI) allows test data and instruction bits to be loaded serially in the various test

data registers. Values on the TDI are shifted on the rising edge of TCK. When undriven TDI

should be connected to a logic one.

3.2.1.3 Test mode select

Test mode select (TMS) is the control input of the TAP Controller. All boundary scan test

operations will be controlled by TMS. Capturing, shifting and updating operations will occur

only based on TMS. TMS value is sampled at a rising edge of TCK. When undriven TMS

should be connected to a logic one.
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3.2.1.4 TDO

Test data output (TDO) is then shifted out data from the test data register or instruction register.

Changes in the value of TDO occurs only at the falling edge of TCK. TDO value should be in

its inactive state other than the shifting operations.

3.2.1.5 TRST*

Test Reset (TRST*) is the optional pin of the hardware. It provides a hard reset to the boundary

scan circuitry. TAP controller can asynchronous reset to the test logic reset state when a zero is

asserted. This pin is independent of a functional reset.

3.2.2 TAP Controller

TAP controller FSM state diagram containing 16 states is shown in figure 3.2.2. The TAP

Controller is a 16 state finite state machine that uses state diagram as shown in figure 3.2.2. TAP

controller can change its state only on the positive edge of TCK. The TAP controller changes

its state based on the value of TMS. TMS should be set to 0 or 1 before the rising edge of TCK.

TMS is sampled only at the rising edge of TCK. TAP controller will be asynchronously reset to

the test logic reset state on the assertion of TRST* known as a hard reset. TAP controller also

can synchronously reset to the test logic reset state on the application of five consecutive 1’s

on TMS. The TAP controller will be in the reset state regardless of its current state in the state

diagram. This reset is also known as a soft reset.[3]

The 16 states are divided into three parts. The first part contains the test logic reset and the

RunTest/Idle state. The other two parts are two vertical columns in the state diagram containing

7 states each. They both columns are identical except for the state targeting the registers. The

vertical column in the left targets states for the data register and the vertical column in the right

targets states for instruction register. The behavior of both is the same.

The main function of the TAP controller includes some of the function listed below:

• Reset boundary scan test architecture.

• Provide control signals to load instruction in the IR.
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Figure 3.2.2: State diagram of TAP Controller

• Provide control signals to perform test operations of capturing and updating test data.

• Provide control signals to perform shift operations between TDI and TDO.

3.2.2.1 Test Logic Reset

In this TAP controller state test logic is in its reset state and the normal operation of IC can

happen without any interrupt. The instruction register is decoded with the IDCODE instruction

if the design has a device identification register available or the BYPASS instruction is decoded

as the default instruction. When a low value is applied to the TRST*, the TAP controller resets

and remains in this state. TAP controller can synchronously reset by applying TMS to high

value for consecutive 5 TCK cycles.
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3.2.2.2 RunTest/Idle

The controller enters this state when TMS is kept as high it remains in this state until TMS is

held low. Activities in specifies logic occurs for certain instructions are present. While execut-

ing RUNBIST which causes self test, the controller remains in this state. For other instructions

it is in the idle mode, test data registers retain their previous value.

3.2.2.3 Select DR Scan

A temporary controller state in which TAP remains for one TCK. Here controller decides to

enter the data register column or instruction register column based on the TMS value given. If

TMS value is changed to low the controller transits to Capture-DR state and if it is held high

controller transits to Select-IR-Scan state.

3.2.2.4 Select IR Scan

A temporary controller state in which TAP remains for one TCK. If TMS is kept low the con-

troller moves to Capture-IR state and if it is held high controller moves to the test logic reset

state.

3.2.2.5 Capture IR

This is a state where parallel loading of values occurs in the Instruction Register on the rising

edge of TCK. The two LSBs are hard coded to value “01”. Any higher order bits value may

receive design specific values. The controller enters Exit1-IR if TMS is changed to high and

Shift-IR if TMS is changed to low.

3.2.2.6 Shift IR

The Instruction Register is connected between TDI and TDO in this controller state. The in-

struction bits are shifted in the Instruction register from TDI on the rising edge of TCK. The

controller remains in this state until all instruction bits are shifted so TMS is held low during

shifting. The controller transits into Exit1-IR state when TMS is held high.
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3.2.2.7 Exit1 IR

The controller state is Pause IR or Update IR based on the value of TMS. If TMS value is kept

high controller moves to Update IR state if it is changed to low controller, transits to Pause IR

state.

3.2.2.8 Pause IR

This state allows the boundary scan to pause its function and wait for any external operations

to complete. For long data, sequence tester might have load and reload data. This state allows

waiting for more data to shift in.

3.2.2.9 Exit2 IR

The controller is in Shift IR or Update IR state based on the value of TMS. If TMS is changed

to high value, controller moves to Update IR state if it is held low controller moves to Shift IR

state.

3.2.2.10 Update IR

The instruction shifted in the previous instruction is latched parallelly in the parallel hold reg-

ister, on the falling edge of TCK. The new instruction latched becomes the current instruction,

overriding the previous instruction loaded in the Instruction Register. If TMS is held high con-

troller transits to Select-DR-Scan state if it is kept low controller transits to RunTest/Idle state.

3.2.2.11 Capture DR

This states loads the parallel data into the data register on the rising edge of TCK. If TMS is held

to high controller transits to Exit-1-DR state and if it is held low controller moves to Shift-DR

state.

3.2.2.12 Shift DR

This controller state places the decoded data register between TDI and TDO. It shifts one-bit

data on each rising edge of TCK toward TDO. Simultaneously it shifts data from TDI. If TMS
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is high, the controller will enter Exit-1DR state and remains in Shift-DR state only when TMS

is low. The controller will remain in this state until the shifting of all data is done.

3.2.2.13 Exit1 DR

This is a temporary controller state. The controller is in Pause-DR or Update-DR state based

on the value of TMS. If TMS is held high controller moves to Update-DR state if it is held low

controller moves to Pause-DR state.

3.2.2.14 Pause DR

This state allows boundary scan to pause its function and wait for some external operations to

complete. For long data, sequence tester might have load and reload data. This state allows

waiting for more data to shift in.

3.2.2.15 Exit2 DR

This is a temporary controller state. The controller is in Shift-DR or Update-DR state based on

the value of TMS. If TMS is held high controller transits to Update-DR state and if it is held

low controller transits to the Shift-DR state.

3.2.2.16 Update DR

In this controller state, data hold in the parallel flop of boundary scan register is loaded on

the falling edge of TCK. The data hold in the parallel output changes its value on this state

only. If TMS is high controller moves to Select-DR-Scan state if it is low controller moves to

Run-test/Idle state.

3.3 Data Registers

All boundary scan instructions places the decoded data register between TDI and TDO. There is

only one register selected at a time which is placed between TDI and TDO. Some of the registers

like Boundary Scan Register, Bypass Register are mandatory to be present in the boundary scan
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architecture. Other data registers like Identification Register, User defined Register, and other

test data registers are optional in the architecture.

3.3.1 Bypass Register

Bypass Register is a mandatory register with only one cell. It is a 1-bit register and placed

between TDI and TDO when BYPASS instruction is decoded. Bypass register shortens the

scan path between TDI and TDO. When boundary scan containing IPs are tested on board,

bypass register is helpful to bypass some of the IPs and thus shortening the chain on the board.

Also, when TAP is in Capture-DR state of TAP FSM then it captures a fix logic “0” and shifted

out in the Shift-DR state.

3.3.2 Identification Register

Device Identification Register is an optional data register in the boundary scan architecture.

When provided it is usually 32-bit register that stores complete identification information of the

component in which boundary scan is implemented. When TAP FSM is in Capture-DR state it

captures 32 bit value of the device Identification Register and the identification bits are shifted

out in the subsequent Shift-DR state. This way the register is used to identify the manufacturers,

part number and revision of the chip during the testing.

3.3.3 Boundary Register

The boundary register is formed by chain of boundary scan cells at each primary input and

each primary output pins. This mandatory register can be used to monitor different activities

on device input and output pins. Boundary scan cell can be of different types based on its

observability and controllability feature on I/Os. Figure 3.3.1 shows typical symbol for all kind

of boundary scan cell. The cell can be used as an input cell or output cell. Boundary Scan

Register is formed by serial chain of such types of boundary scan cells. The “Parallel In” and

“Parallel Out” are connected to system logic or device pins based on whether the cell is input

or output cell. If the boundary scan cell is connected to input pin, “Parallel In” is the primary
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input of the device and connected to the input pin. “Parallel Out” is connected to the system

logic. If the boundary scan cell is connected to the output pin, “Parallel In” is connected to the

system logic and “Parallel Out” is the primary output of the device and connected to the output

pin of the device.

Figure 3.3.1: Typical boundary scan cell symbol

“Parallel In” and “Parallel Out” pins load/ unload data in parallel from input pin to system logic

and vice versa. The data can be serially loaded in the boundary scan cell from “Shift In” and

“Shift Out”. “Shift In” of first boundary scan cell in the chain is connected to TDI and “Shift

Out” of that cell is connected to the next boundary scan cell “Shift In” Input pin. The “Shift

Out” is connected to the “Shift In” of next cell. Thus forming a chain of boundary scan cells

and eventually a boundary scan shift register. The “Shift Out” of last boundary scan cell in the

chain will be connected to the TDO pin.

Figure 2.2.1 shows typical boundary scan cell. During normal mode of operation Mode=0,

and data is passed from Parallel In to Parallel Out and the boundary scan cell is transparent

to system logic. There are three logical operations performed by boundary scan cell: Capture,

Shift ad Update. The data is stored in the capture flop on the pulse of Clock DR, when Shift DR

is zero. So the data can be captured from Primary In alongwith logical operation of the chip.

When Shift DR is one, the captured data can be shifted out to the next boundary scan cell. By

applying a clock pulse to Update DR, data is made available at the output of the update flop.

When Mode=1, system logic is made independent of the outside world and update flop output

goes in the system logic.
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3.4 Instruction Register and Instructions

An Instruction register shifts instruction into the design. Instruction register selects test to be

performed or access data registers. A new instruction is being loaded into the register through

TDI. At the completion of the shifting process the instruction shifted is being latched at the

parallel output and the new instruction gets decoded. The minimum size of instruction register

required is two. The two least shift register loads a fix binary value “01” when TAP transits

through Capture IR state. Table 3.1 shows the operation of IR in each TAP FSM state.

Controller State Shift Register State Parallel Output

Test Logic Reset Undefined
Decoded instruction
IDCODE(or BYPASS)

Capture IR
Load “01” in LSBs and design data
into MSBs

Hold last state

Shift IR Shift to TDO Hold last State
Exit1 IR

Hold last state Hold last stateExit2 IR
Pause IR
Update IR Hold last state Load bits from shift register
All other state Undefined Hold last state

Table 3.1: Instruction Register operations

3.4.1 BYPASS

The BYPASS instruction will place 1 bit bypass register between TDI and TDO. This instruction

and bypass register are mandatory according to the IEEE 1149.1 standard. BYPASS instruction

produces short path between scan path when many devices are present on board. Instruction

register decodes to BYPASS instruction with opcode of all one’s. When BYPASS instruction

is decoded bypass register will be parallely loaded to 0 immediately upon TAP FSM transits

through Capture-DR state. When TAP is in reset state, the default instruction decoded is BY-

PASS instruction when idcode register is not present in the device.
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3.4.2 IDCODE

This instruction puts 32 bit idcode register between TDI and TDO. IDCODE is noncompul-

sory instruction. When TAP FSM is in reset state, the default instruction decoded is IDCODE

instruction. The Idcode register of the device is parallely loaded with the idcode value of the

device immediately upon TAP FSM transists through Capture-DR state. The LSB of Idcode is

1. So the first bit shifted out of TDO will be 1. Four MSB bits are the version number of the

chip. Next 16 bits are the manufacturer part number. And next 11 bits are manufacturer identity

number which are determined from JEDEC (Joint Electron Device Engineering Council). A

component can be identified on a board through TAP pins with the Idcode instruction.

3.4.3 SAMPLE

Figure 3.4.1 shows test data flow when SAMPLE instruction is executed. The SAMPLE in-

struction places boundary scan register between TDI and TDO. It is the mandatory instruction

and its opcode is user defined. SAMPLE instruction doesnot disconnects IC pins from the sys-

tem core logic. Mode of boundary scan cell is 0. The capture flop of all boundary scan cell

captures the data of the IC input in case of input pin and captures data of the system logic in

case of the output pin. The Boundary Register thus takes value present at its “Parallel In” pin,

taking snapshot of the pin activity being carried out. The operation of test data from the system

pins and system logic will be loaded in the capture flop at the rising edge of TCK. The captured

data can be shifted out when TAP FSM transits through Shift-DR state and select of the multi-

plexer becomes 1. Parallel output registers in the boundary scan cell loads the data in system

logic or system output pin in the Update DR controller state on the negative edge of TCK.

3.4.4 PRELOAD

Figure 3.4.2 shows test data flow when PREELOAD instruction is executed. The PRELOAD

instruction places boundary scan register between TDI and TDO. It is the mandatory instruction

and its opcode is user defined. PRELOAD instruction allows shifting of test data between shift

registers without affecting the normal operation of data flow. The shifting takes place at the

positive edge of TCK and Shift DR = 1 of the multiplexer. The shifted data is parallely loaded
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Figure 3.4.1: Data flow while Sample is selected

into the latched registers in the Update DR controller state at the negative edge of TCK. Since

the Mode = 1, the data will be blocked and not affect the system logic operation. This updated

data allows initial data to be loaded into the system logic before the selection of other instruction

like EXTEST instruction so known data is present at the updated flop. Always PRELOAD

instruction is executed before EXTEST like instruction to have proper data setup. The opcode

of SAMPLE and PRELOAD instruction can be same.

On-chip system 
logic

0

1

0

1

0

1

0

1
D       Q

CK

D       Q

CK

0

1

0

1

Input Cell

SI

SO

Mode

Update 
DR

Clock 
DR

Shift 
DR

0

1

0

1

0

1

0

1
D       Q

CK

D       Q

CK

0

1

0

1

SI

SO

Mode

Update 
DR

Clock 
DR

Shift 
DR

Output Cell

Figure 3.4.2: Data flow while Preload is selected

22



3.4.5 EXTEST

Figure 3.4.3 shows data flow when EXTEST instruction is executed. The EXTEST instruction

places boundary scan register between TDI and TDO. It is the mandatory instruction and its

opcode is user defined. The EXTEST instruction is vital instruction of the boundary scan and

used in testing of interconnections between various devices of board. The Mode signal is 1

for EXTEST instruction. So the data present at the input of the multiplexer gets updated in the

system logic or it is made available at the output pin. The output pin is in control of the boundary

scan register. The first stimulus test data to be applied during the EXTEST instruction comes

from the PRELOAD instruction. Thus when updated with the EXTEST instruction known data

can be driven immediately instead of garbage value.
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Figure 3.4.3: Data flow while Extest is selected

3.4.6 HIGHZ

The HIGHZ instruction is an optional instruction and places bypass register between TDI and

TDO. When HIGHZ instruction is effective, all output drivers are placed in its inactive state.

This instruction is purposive when an in-circuit tester wants to drive some desired states to test

other chips so that the drivers can be protected by the overdrive damage. HIGHZ instruction

causes output pins and bidirectional pins to go in highz state. The highz state of pins occur

immediately upon TAP controller transits through Update IR state.
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3.4.7 CLAMP

The CLAMP instruction is optional and placed bypass register between TDI and TDO. When

CLAMP instruction is effective, all output drivers are under the control of the boundary register

and are updated with those values present on it. The boundary register is preloaded with the

values with the PRELOAD instruction. The output and bidirectional pins change its state with

those preloaded sequences immediately upon the TAP controller transits through Update IR

state. CLAMP thus provides digital guarding to the driver pins. When the board is tested, some

of the nodes need to be forced with “0” or “1” to set some testable conditions. If these nodes

get the source from boundary scan, then these nodes can be protected from overdrive damage.

3.5 Boundary Scan for Advanced Networks

All IC’s input output structures are updated with the advancing in the IC technology and to be

compatible with the Moore’s Law. Now the IC pad design have in itself become complex and

can contain number of transistors. The increase in complexity allows IC’s to work at higher

frequencies of gigahertz range. The technology has advance from single ended transmission

to differential signal transmission between ICs. In differential signal transmission of data, data

is transmitted on two parallel wires as compared to single ended transmission. Single ended

transmission are more prone to noise as they are referenced to fixed voltage levels. It can cause

extra transition due to presence of noise. Differential signals are referenced to each other. The

other data line is compliment of the original data line. So if noise is added to both lines, it gets

cancelled due to compliment nature at the receiver side. So differential signal transmissions are

preferred nowadays over single ended transmission due to increase in noise immunity.

3.5.1 Testing Advance I/O

The use of series capacitance either integrated in the chip itself or present on PCB, blocks DC

value from passing through the signal path between the driver and receiver. Only the AC compo-

nent of the signal can pass with the signal being high pass filtered. This is AC coupling between

driver and receiver. The use of simple wires between driver and receiver is DC coupling. When
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DC coupled, there may be offset errors when transmitting data between two incompatible de-

vices with different set of logic levels, thus degrading their performance. In contrast, when AC

coupling is used performance may be increased between two incompatible devices by the bias

voltage provided by the bias generation circuit within the receiver or on the board by using AC

coupling.

Advance I/O bring up new testing problems. The 1149.1 standard waveform is show in fig-

ure 3.5.1 where the data from driver gets updated in the Update DR state and is present at the

receiver in the Capture DR state where it is captured. In DC coupled signal propagation is in-

definite and is captured properly by the receiver.

C U C U

TX RX

VH

RX

VL

VL

VH

Capture DR

2.5  TCK Cycles

Update DR

TX

Figure 3.5.1: DC coupled signal propagation

In case of AC coupled signals, the signals get decay away before the Capture DR state of the

receiver as shown in figure 3.5.2. IEEE standard 1149.6 [2] provides additional test resources

to solve this problem. Advance input-output pins require a time varying signal i.e AC signal for

testing of the interconnections. This may include single ended signal pins and differential pins

that support AC coupling. It is also expected that a chip with pins supporting AC coupling may

possess pins that are DC coupled. There are two types of operational mode: mission mode and

test mode. In mission mode device performs its normal function. Test mode is categorized into

two modes:

• DC test mode: It allows boundary scan testing between DC I/O pins which are DC

coupled.
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• AC test mode: It allows boundary scan testing between AC I/O pins which are AC or DC

coupled.

C U C U

TX RX

VT

TX

RX

VT

VL

VH

Update DR

Capture DR

Figure 3.5.2: AC coupled signal decay

The two new variations of EXTEST instruction for advance I/O networks called the AC EX-

TEST instruction set are EXTEST_TRAIN and EXTEST_PULSE. These instructions will af-

fect the behavior of the AC pins. Any DC pins in the device will behave as specified by EXTEST

when either of these instructions for AC pins is selected.

3.5.2 Output drivers

AC pin driver causes transitions in EXTEST_TRAIN or EXTEST_PULSE instructions. The

1149.6 [2] standard functions on producing transitions on driver pins. The 1149.1 [1] standard

functions on producing levels. If boundary scan cell behind the driver is loaded with logic one,

the driver will be updated with high value until it is again updated with a logic zero. If the

boundary scan cell has a logic one after Update DR state, the driver will retain its state. In AC

EXTEST instructions it causes atleast two transitions each time TAP transits through Update

DR state. The modification in the boundary scan cell as compared to the standard boundary

scan cell is shown in figure 3.5.3.

In the test data path, there is capture flop and update flop as in a 1149.1 data cell. A multi-

plexer is included that selects between the output of the updated flop and the modulated signal

with the Ex-Or gate along with AC test signal. For the EXTEST instruction output of the
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Figure 3.5.3: Boundary scan cell supporting AC instructions

updated flop is selected. For the AC EXTEST instructions, the modulated output is selected.

An AC output pin driver expects two extra control signals: the AC test signal and AC test

mode. AC test mode is control signal generated from the TAP controller that selects EXTEST

or EXTEST_PULSE/EXTEST_TRAIN behavior. EXTEST_PULSE generates a pulse of in-

verted data on the driver that will remain as it is as long as TAP remains in the RunTest/Idle

state. In EXTEST_TRAIN, a train of pulses is seen at half TCK clock cycle. The data in

both will become the noninverted in the Select DR scan. The number of TCK clock cycles in

the RunTest/Idle state tells the number of transitions between data and inverted data for EX-

TEST_TRAIN. The AC test signal remains deasserted when the TAP doesnot pass through the

RunTest/Idle state ans the effect of AC instructions EXTEST_PULSE and EXTEST_TRAIN

is same as the DC EXTEST instruction. EXTEST_PUSLE and EXTEST_TRAIN instructions

places boundary scan register between TDI and TDO.

3.5.3 Input Test Receiver

All AC pins that receive data into an IC are implemented with the test receivers. Single ended

AC pins have one test receiver and the differential AC pins have one test receiver per leg.

When either EXTEST_TRAIN or EXTEST_PULSE is in effect, the test receiver responds to

only valid signal transitions at the receiver pin. The purpose of the test receiver is to reconstruct

27



+

-

+

-

Capture

 

Update

0

1

0

1

0

1

0

1

Shift Out

Mode

Update DRClock DR

Shift DR

Shift In

Set

Hyst 
Memory

Clear 

VHYST

VHYST

VBIAS

AC

DC

PAD RF

CF

Init Clk

Init Data

Figure 3.5.4: Test receiver circuit

the test signal which is driven by the upstream driver of that receiver which is either AC or DC

coupled. For AC EXTEST instructions, it does this by detecting edges and doesn’t respond

to the levels of the input waveform. When EXTEST instruction is decoded, the test receiver

behaves as a level detector.

The test receiver responds to the voltage levels as seen at the input pin. As shown in figure

3.5.4 an analog switch selects between DC and AC waveforms. For DC the analog switch

is connected to the fix bias voltage. The test receiver consists of memory element with two

comparators. The output of both the comparators are set and reset pin of the hysteresis memory

element of the receiver. Each comparator has one pin from the input connected through the

hysteresis voltage and other pin is connected to the common reference bias voltage. When the

voltage present on the input pin is greater than VBIAS + VHY ST , then the upper comparator will

set the flipflop. When the voltage on the input pin is lower than the VBIAS − VHY ST , then the

lower comparator will reset the flipflop. The flipflop retains its state when any voltages other

then this is present on the input pin. If there is any open circuit on an input pin, there would be
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no valid voltage level seen at the input pin. The initial data of the test receiver is captured by

the boundary scan cell. The data input of the flipflop is the shifted out data from the previous

shifting.

When the EXTEST_TRAIN or EXTEST_PULSE is selected, the test receiver responds to the

valid signal transitions at the receiver pin. For the AC analog switch is connected to the low pass

filtered signal of the input. Here the signals are self compared in the sense they are compared

with its delayed version. This circuit forms an “edge detecting” circuit and it responds to only

valid transitions. The positive input of the upper comparator detects rising edge of the input

and the negative leg detects the delayed version of the input. The flipflop will be set for such

rising transitions. The negative input of the lower comparator sees falling edge of the input and

the positive leg sees the delayed version of the input. The flipflop will be reset for such falling

transitions. The output of the flipflop is generation of the original driven waveform. The initial

state are set with data input and clock of the flipflop. For any invalid transitions init data is

captured by the boundary scan register cell. The initialisation of the hysteric memory occurs at

the negative edge of TCK clock cycle in Exit1 DR or Exit2 DR state.

This chapter described the detailed implementation of boundary scan architecture in the chip.

It described function of the TAP FSM, data registers that reside in the TAP, boundary scan

instructions supported. It also described additional boundary scan instructions supported for

the advance networks.
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Chapter 4

Implementation

4.1 Verification Introduction

Verification is part of the VLSI design flow. A VLSI design can be described at different

levels of abstraction. The flow consists of converting a higher level description of a design

to a lower level description. From the architectural level the design is described at the Register

transfer level, which contains combinational and sequential functions to be performed in data

and control paths. Each design step of the VLSI design flow needs verification. Verification

can be at RTL level, gate level or at the transistor level. The RTL level description must be

verified for the functionality of the behavioral description before synthesis to the logical level.

The logical level implementation must be verified to guarantee the correct functionality of the

final design. In the final step of front end design, the logical level description is transformed into

a physical level description to obtain the physical design and interconnection of the transistors

in the device before fabrication. The physical level description is verified for the timing and

operating frequency specifications. Design added to increase testability also needs to be verified

to check the proper implementation of the design. So the insertion of extra hardware in any

design for the testing purpose also needs to be verified to check its functionality and proper

implementation at the RTL level.

30



4.2 Flow to generate tests

Boundary scan is verified from the test patterns which are generated from BSDL (Boundary

Scan Description Language) file. A flow used to generate boundary scan patterns is provided

by the Mentor Graphics Tessent tool[7] is used for verification. Boundary-scan patterns are

generated using the Tessent shell. No design data other than a valid BSDL file is required for

the pattern generation flow. Pattern signoff file contains a specification of the tests for which

tests are to be generated. The test can be an instruction register test, bypass register, boundary

scan register, sample, clamp, input, output test, highz. The tests cover all instructions supported

by 1149.1[1] standard. It will generate steps in the vector form to verify the instructions which

are supported by the design. The output of the flow can be a Verilog test bench or test patterns

Figure 4.2.1: Flow to generate tests

in the form of SVF, WGL, STIL formats.

31



4.2.1 BSDL file

The BSDL(boundary scan description language) gives a common platform by which IC manu-

facturers can describe testability characteristics in a chip. BSDL is a part of IEEE Std. 1149.1-

2001[1]. BSDL is based on VHSIC hardware description language (VHDL) i.e. BSDL is

written in subset of VHDL. It provides information about how a boundary scan IC is imple-

mented in the device. This file is used by ATPG software tools to develop the test patterns for

the chip.

The designer will describe the design specific attributes of boundary scan architecture such as

length of boundary scan register, length of instruction register, various boundary scan instruc-

tions alongwith user defined instructions, opcode of instructions, Input Output pins assignment.

It also describes which pin is connected to TDI and which pin is connected to TDO. It specifies

the complete boundary scan chain connection of all pins from TDI to TDO, package of the chip,

function of the primary pins of the device, scan port description, all data registers description.

The CAD tools have also the capability of generating boundary scan circuitry and create test

patterns from it based on the above information. The BSDL file includes the following data

from which the tool will pick the data to create test patterns for boundary scan testing:

4.2.1.1 Entity Descriptions

The Entity Declaration is used to identify the name of the device which is described by the

BSDL file. All the BSDL statements are written within the entity description.

Example:

entity xyz_ip is

--BSDL statements to describe the entity

end xyz_ip;

4.2.1.2 Generic Parameter

The Generic Parameter is the part that specifies which package is specified for the chip. The

generic parameter allows the external application to select IC package from the BSDL file.

Example:
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generic(PHYSICAL_PIN_MAP : string := "LGA");

4.2.1.3 Logical Port Description

Logical port description provides logical name to the Input/Output pins. It defines the attributes

of all pins describing it as an input (in bit;), bi-directional (inout bit;), output (out bit;) or if it is

not for boundary-scan (linkage bit;).

Example:

port (TCK, TMS, TDI: in bit;

TDO: out bit;

RXP_0: in bit;

RXN_0: in bit;

TXP_0: buffer bit;

TXN_0: buffer bit;

VCC, GND: linkage bit);

4.2.1.4 Standard USE statement

This statement is used to set the description of the BSDL. To include all features of 1149.1

standard “use STD_1149_1_2001.all” is used.

Example:

use STD_1149_1_2001.all;

use STD_1149_6_2003.all;

4.2.1.5 Device Package Pin Mappings

The Package Pin Mapping is used to determine the internal connections within an integrated

circuit. It describes the mapping of package pins to logical names from port description.

Example:

attribute PIN_MAP of xyz_ip : entity is PHYSICAL_PIN_MAP;

constant LGA : PIN_MAP_STRING :=

"RXP_0:1, RXN_0:2, TXP_0:3, TXN_0:4," &
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"TDI:5, TMS:6, TCK:7, TDO:8";

4.2.1.6 Grouped Port Identification

Port grouping describes the pairing of pins which are differential to each other. If two pins

carry data, differential signaling is used. Differential pairs in an IC are used to improve noise

immunity.

Example:

attribute PORT_GROUPING of xyz_ip : entity is

"Differential_Voltage ((TXP_0, TXN_0))";

4.2.1.7 Scan Port Identification

It identifies the dedicated pins that are used for the boundary scan implementation. These

include TDI, TMS, TCK, TDO, and TRST (if used).

Example:

attribute TAP_SCAN_IN of TDI : signal is true;

attribute TAP_SCAN_MODE of TMS : signal is true;

attribute TAP_SCAN_OUT of TDO : signal is true;

attribute TAP_SCAN_CLOCK of TCK : signal is (40.0e6, BOTH);

attribute TAP_SCAN_RESET of TRST : signal is true;

4.2.1.8 Instruction Register Description

Instruction Register Description describes the optional, mandatory and user defined instruc-

tions. It contains instruction register length, opcodes of each instruction and and instruction

register capture pattern.

Example:

attribute INSTRUCTION_LENGTH of xyz_ip : entity is 8;

attribute INSTRUCTION_OPCODE of xyz_ip : entity is

"extest (00001001)," &

"sample (00000001)," &
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"idcode (00001100)," &

"clamp (00000100)," &

"highz (00001000)," &

"extest_pulse (00001110)," &

"extest_train (00001111)," &

"bypass (11111111) " ;

attribute INSTRUCTION_CAPTURE of xyz_ip: entity is "00000001";

4.2.1.9 Register Access Description

Register Access Description describes which data registers will be placed between TDI and

TDO when the instructions are decoded after Update IR.

Example:

attribute REGISTER_ACCESS of xyz_ip : entity is

"BOUNDARY (extest, sample, extest_train, extest_pulse)," &

"DEVICE_ID (idcode)," &

"BYPASS (bypass, highz, clamp)";

4.2.1.10 Boundary Register Description

Boundary Register Description provides the structure of the boundary-scan cells on the device.

The boundary scan cell can be of different types for eg. bc_1, bc_2, etc. based on its structure

and types of instruction it supports.

Example:

attribute BOUNDARY_LENGTH of xyz_ip : entity is 4;

attribute BOUNDARY_REGISTER of xyz_ip : entity is

-- num cell port function safe [ccell disval rslt]

" 3 (BC_1, TXP_0 , output2, X)," &

" 2 (BC_0, * , INTERNAL, X)," &

" 1 (BC_1, RXP_0 , input, X)," &

" 0 (BC_1, RXN_0 , input, X) " ;
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Figure 4.2.2: Example of BSDL

4.2.2 SVF file

Serial vector format (SVF) provides the platform for exchanging descriptions of high level IEEE

1149.1 operations. The operations consist of scan operations and transition between different

stable states of the TAP controller state diagram. SVF doesn’t explicitly describe the state at

every TCK. SVF is intended to reuse serial vectors during the life cycle of the product, from

its implementation in the design stage to its use in the field. The SVF file is an ASCII file

that consists of a set of different SVF statements. Each SVF commands are terminated by a

semicolon. Scan data is expressed as hexadecimal within a statement.

The following set of SVF commands are supported:

• ENDDR: Indicates default end state for data registers scan operations. The stable states

for ending scan operations of data registers are IRPAUSE, DRPAUSE, RESET, and IDLE.

• ENDIR: Indicates default end state for instruction register scan operations. The stable

states for ending scan operations of instruction registers are IRPAUSE, DRPAUSE, RE-

SET, and IDLE.

• FREQUENCY: Indicates maximum test clock frequency for different TAP operations.

• PIO: Specifies parallel test vectors to be loaded in all capture flop of data registers. The
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characters of the PIO are H to drive logic 1, L to drive logic 0, U to detect logic 1, D

to detect logic 0, Z drives high impedance, X detects unknown. The number of vectors

in the PIO command equals the number of the logical names specified in the PIOMAP

statement.

• PIOMAP: It maps PIO positions to the logical pin. It defines the input-output direc-

tion and logical name for each column mentioned in PIO. The first logical name in the

PIOMAP maps to the first character of the string in PIO statements.

• RUNTEST: Forces the IEEE 1149.1 operations to the runtest/idle state for the specified

period or the number of TCK clock cycles. This is used to control the operations of the

RUNBIST instruction of the device.

• SDR: (Scan Data Register) Performs an IEEE 1149.1 Data Register scan operation be-

tween TDI and TDO. It specifies the value to be scanned into the target device and the

values to be compared against the expected values scanned out of the target. When com-

paring TDO values, the mask option is provided to specify the number of bits to be com-

pared. All values are coded as a HEX string.

• SIR: (Scan Instruction Register) Performs an Instruction Register shift operation between

TDI and TDO. It specifies the value to be scanned into the instruction register of the

target device and the values to be compared against the expected values scanned out of

the instruction register of the target. When comparing TDO values, the mask option

is provided to specify the number of bits to be compared. All values are coded as a

hexadecimal string.

• STATE: Forces the TAP state to a specified stable state. It provides a list of states through

which one can describe explicit states to travel through the TAP state machine. If the path

state list is not provided default path is assumed based on the current state and the final

stable state. IRPAUSE, DRPAUSE, RESET, and IDLE are the valid stable states.

• TRST: (Test Reset) Controls the optional Test Reset line to reset the TAP controller. It

must be placed at the beginning of any statements to provide a reset sequence of boundary

scan in the beginning.
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4.3 Test Algorithm

Boundary scan is verified by the test patterns generated by the above mentioned Mentor Tessent

tool using just the description provided in the BSDL file. The test patterns can be generated

for various tests supporting multiple instructions of boundary scan. Below is described how the

patterns are mapped from the BSDL file. Tessent tool receives all necessary information of the

boundary scan to generate tests for the particular instructions and maps it to the SVF commands

with the scanning sequence. The test algorithm with the scanning sequence for test logic reset,

bypass reg, instruction register, sample, extest, extest_pulse, extest_train tests which are to be

verified are described in the following sections.

4.3.1 Test Logic Reset Test

The following steps describes steps from the SVF file generated for the verification of the hard

reset and soft reset of the boundary scan.

• Step 1: Initialise the TAP controller by pulsing TRST to 1-0-1 stream.

• Step 2: Check if RESET of TAP controller accomplished by reading the IDCODE value

from TDO.

• Step 3: Preload Instruction register with SAMPLE instruction, which differs from the

expected post reset Instruction register’s instruction.

• Step 4: Reset the TAP controller by setting TMS=1 for 5 TCK cycles.

• Step 5: Check if RESET of TAP controller accomplished by reading the IDCODE value

from TDO.

4.3.2 Instruction Register Test

The following steps describes steps from the SVF file generated for the verification of the in-

struction register of the TAP architecture.

• Step 1: Verify the TAP FSM states sequence by skipping Shift-IR state via IDLE→SELECT-

DR→ CAPTURE-IR→EXIT1-IR→PAUSE-IR.
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Figure 4.3.1: SVF file of reset test

• Step 2: Load the TDI via instruction register with walking one pattern ..0001.

• Step 3: Shift the first capture value of ..xx01 through TDO to verify proper values got

captured in the instruction register.

• Step 4: End shifting in the Pause-IR state.

• Step 5: Again, load the TDI via instruction register with walking zero pattern ..1110.

• Step 6: Shift the value of previous walking zero pattern from the shift register to the

TDO, to verify proper values shifted out from instruction register.

• Step 7: Again, load the TDI via instruction register with all one’s pattern ..111 and shift

the value of previous walking one pattern from the instruction register to the TDO.

Figure 4.3.2: SVF file of instruction register test

Figure 4.3.2 shows the SVF file for the above mentioned steps. SIR commands attains value 8

from the Instruction register length specified in the BSDL file. It shifts “01” value in the TDI

and scans out walking zero pattern i.e “FD” coded as hex value from the instruction register.

Then again with the SIR command it scans in “FE” value in the TDI through the instruction
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register and scans out previously scanned in value in the TDI. Lastly the scan in pattern in TDI

is “FF” and previously scanned in pattern is shifted out.

4.3.3 Bypass Register test

The following steps describes steps from the SVF file generated for the verification of the bypass

register of the TAP architecture.

• Step 1: Verify the TAP FSM state sequences by skipping Shift-DR via IDLE→SELECT-

DR→ CAPTURE-DR→EXIT1-DR→PAUSE-DR.

• Step 2: Load IR with the BYPASS instruction by shifting 11111111 in TDI. This places

bypass register between TDI and TDO after Update-IR state.

• Step 3: Shifting first stimulus pattern logical one in the bypass register.

• Step 4: Shift the first capture value of logical zero through TDO to verify standard im-

posed value got captured in the bypass register.

• Step 5: End shifting in the Pause-DR state.

• Step 6: Shift second stimulus pattern of logical zero and compare the previous shifted

pattern at TDO with logical one.

• Step 7: End shifting in the Pause-DR state.

• Step 8: Shift the last stimulus pattern with logical one and compare the previous shifted

pattern at TDO with logical zero.

Figure 4.3.3: SVF file of bypass register test
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Figure 4.3.3 shows the SVF file for the above mentioned steps. SIR commands attains value

8 from the Instruction register length specified in the BSDL file. It shifts the opcode of the

bypass instruction “11” value in the TDI and scans out default captured value of “0”. With the

SDR command of 1 bit, the scanning sequence is such that it consequently applies “0” and “1”

pattern in the bypass register. The shifted sequence are captured during the subsequent shifting

data register operation and shifted out through TDO.

4.3.4 Sample test

The following steps describes steps from the SVF file generated for the verification of the sam-

ple instruction of the boundary scan.

• Step 1: Load the instruction register with the SAMPLE instruction by shifting 00000001

in TDI. This places boundary scan register between TDI and TDO after Update-IR state.

• Step 2: Shift first stimulus even pattern in the boundary scan register.

• Step 3: Load parallel vectors in the input pins with odd pattern in the RunTest/Idle state

before Capture-DR.

• Step 4: Shift next stimulus odd pattern in the boundary scan register and check the bound-

ary scan captured values at TDO.

• Step 3: Load parallel vectors in the input pins with even pattern in the RunTest/Idle state

before Capture-DR.

• Step 4: Shift next stimulus odd pattern in the boundary scan register and check the bound-

ary scan captured values at TDO.

• Step 5: Load parallel vectors in the input pins with the safe pattern.

• Step 6: Shift the safe value in the boundary scan register and check the boundary scan

captured values at TDO.

Figure 4.3.4 shows the SVF file for the above mentioned steps. Instruction register is loaded

with sample instruction. Input pins are driven with the even and odd patterns using PIO com-

mand. “H” and “L” drives to logical one and logical zero respectively. The captured values are

shifted through TDO. Thus sample instruction gets verified.
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Figure 4.3.4: SVF file of sample test

4.3.5 Extest test

The following steps describes steps from the SVF file generated for the verification of the extest

instruction of the boundary scan.

• Step 1: Set the input pins with an even pattern.

• Step 2: Load IR with the PRELOAD instruction by shifting 00000001 in TDI. This places

boundary scan register between TDI and TDO after Update-IR state.

• Step 3: Shifting the first stimulus even pattern in the boundary scan register. This is the

preload data for the extest instruction.

• Step 4: Load IR with the EXTEST instruction by shifting 00001001 in TDI. This will

apply the first parallel test vector and the output pins get updated with the even pattern

after Update IR state.

• Step 5: Set the input pins with an odd pattern and detect the updated patterns in the

RunTest/Idle state.

• Step 5: Shift next stimulus odd pattern in the boundary scan register. The output pins get

updated with the odd pattern after Update DR state.

• Step 6: Compare the captured TDO data for an odd pattern and load the boundary scan

chain with the safe pattern.
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Figure 4.3.5: SVF file of extest test

Figure 4.3.5 shows the SVF file for the above mentioned steps. Instruction register is decoded

with preload instruction. Output pins are updated with the even and odd patterns from the

preloaded data. “U” and “D” detects logical one and logical zero respectively. Thus we can

compare if the data on the output pins gets updated with the preloaded data correctly. This data

becomes the driver for other pins and is used to test the interconnection between chips. Thus

the extest instruction will be verified with this sequence.

4.3.6 Extest_train test

The following steps describes steps from the SVF file generated for the verification of the Ex-

test_train instruction of the boundary scan.

• Step 1: Load IR with the PRELOAD instruction by shifting 00000001 in TDI. This places

boundary scan register between TDI and TDO after Update-IR state.

• Step 2: Shifting the first stimulus even pattern in the boundary scan register. This is the

preload data for the extest_train instruction.

• Step 3: Load IR with the EXTEST_TRAIN instruction by shifting 00001001 in TDI.

This will apply the first parallel test vector and the output pins get updated with the even

pattern after Update IR state.
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• Step 4: Check the updated output pins with even pattern over 3 TCK cycles to check the

toggling of output pins in RunTest/Idle state.

Figure 4.3.6: SVF file of extest_train test

Figure 4.3.6 shows the SVF file for the above mentioned steps. Instruction register is loaded

with PRELOAD instruction to update the output cell to the known value in the EXTEST_TRAIN

instruction. This updated value gets inverted in RunTest/Idle test at every negative edge of TCK.

The driven data and the inverted data are compared with the “U” and “D” in the PIO commands

which detects logical one and logical zero respectively.

4.4 Integration in Environment

The SVF file generated as mentioned in the previous section needs to be verified. It is integrated

in the OVM testbench environment. The results are compared with actual versus expected

value. The major components of the testbench environment are top, testbench, JTAG agent.

The Testbench top instantiates DUT and connects the DUT signals to the interface. Test selects

the SVF file which is driven to the DUT. Here different tests can be provided. Rest of the

environment remains same. So Verification re-usability is achieved and any boundary scan test

can be verified by just integrating one test pattern file for a particular BSDL file generated test

content. Test contains environment in which scoreboard and JTAG agent are instantiated. JTAG

driver, JTAG monitor and JTAG sequencer are instantiated in the JTAG agent. SVF commands
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are converted into sequences which is read by JTAG sequencer. The sequencer values are the

transition value of FSM, TDI value, Instruction Register bits and TDO value for comparison in

scoreboard. The JTAG driver receives the packet from the sequencer and drive JTAG signals

to the JTAG interface. JTAG driver drives TDI values from the SVF commands which are

converted into sequences. Signals at JTAG interface are driven at pin level and applied to

DUT. JTAG Monitor captures signal activity from the DUT and send to other components. The

captured signals are compared in the scoreboard where checkers are present which compares

between expected and actual TDO value and output pin values as generated by the test.

JTAG Driver
JTAG 

Monitor

JTAG 
Sequencer

Interface

DUT

SVF file

Monitor

Figure 4.4.1: OVM testbench environment

4.4.1 Components in the OVM testbench

An OVM testbench is composed of reusable verification environment called OVM verification

components. OVM testbench is used because of its configurability, reusable environment. OVM
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components are integrated with the DUT to verify the implementation of the design.

4.4.1.1 JTAG Sequencer

JTAG sequencer generates stimulus which are provided to the driver upon request. It reads SVF

file and coverts the SVF commands into JTAG sequences. It captures the data into sequences

present into SVF file. It drives the data to the driver with packet level transactions. The various

fields that will pass from sequencer to the driver are TMS input stream, TDI input stream,

expected TDO bits, masking of TDO bits for comparison, reset status of TAP controller, IR

load bits, DR load bits, Expected DR bits and Actual DR bits.

4.4.1.2 JTAG Driver

JTAG driver consists of the tasks that drives the DUT through the pin interface. It receives

packet level transactions from the sequencer and converts into pin level to drive the DUT. Data

is driven through the JTAG interface of the DUT. Other data is driven to the input pins of the

DUT.

4.4.1.3 JTAG Monitor

JTAG monitor converts the data on the output pins being monitored to the transactions. It sends

those transaction level packet to the scoreboard component for comparison with the golden

responses. Monitor samples the DUT signals but doesnot drive them. It updates the scoreboard

at each clock. JTAG monitor sends packet to the scoreboard, TAP FSM state to sample data

in that state, Shifting in of TDI data, number of shifted TDI data in SHDR state, parallel data

driven through the input pins before CADR state.

4.4.1.4 JTAG Agent

JTAG agent encapsulates JTAG driver, JTAG monitor and JTAG sequencer. The agent will

initiate transactions to the DUT. Agent is a container for driver, monitor and sequencer. Agents

are configurable to be active or passive agent. Active agent is capable of driving the generated

stimulus to the DUT. interface.
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4.4.1.5 Passive Agent

Passive agent is capable of only monitoring the DUT signals. Monitor in passive agent is used

for observing the pin signals of the DUT. The signals from the DUT are converted into packet

level transactions. The packet will be send to the scoreboard for comparison with the expected

output data. The packet will consists of DUT signals that don’t need driving like Output pins of

the DUT, TAP FSM state to sample data in that state, Shifted out TDO data, number of shifted

TDO data in SHDR state, parallel data out through the output pins in UPDR state.

4.4.1.6 Scoreboard

Scoreboard compares the output transactions from the DUT with the expected value. The values

compared will be shifted out TDO data versus the expected TDO data, parallel data of output

pins with its expected value.

4.4.1.7 Environment

The Environment is the top level component instantiating JTAG Agent and Passive agent, score-

board. The environment consists of the configurable properties with which one can configure it

from different data registers length, instruction register length for different design under test.

4.4.1.8 Test

Test instantiates the Environment. Test selects the svf file which is given to the sequencer to

read different svf commands. SVF file can contain tests for test logic reset, instruction register,

bypass register, boundary scan register, sample, extest. So different tests can be provided. Rest

of the environment will remain same and is reusable.

4.4.1.9 Top

Top instantiates test and the design under test and interface.

Thus various test patterns for the verification of different boundary scan instructions can be

generated and verified by the above testbench environment.
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Chapter 5

Results and Discussions

This chapter discuss about the results obtain from the previous methodology used for the ver-

ification of boundary scan. The SVF file generated for the verification of boundary scan are

validated using the OVM testbench environment described in previous chapter. The simulation

is done in Synopsys VCS tool to view the waveforms and debug the RTL schematic in case of

miscompares in the result. The below sections shows the result passing waveform of bypass,

test logic reset, extest and extest_train test. One of the failing scenario for idcode register test is

also described.

5.1 Bypass test

The BYPASS instruction is verified by placing 1-bit bypass register between TDI and TDO.

Firstly instruction register is shifted with the bypass opcode. After update IR, instruction regis-

ter is decoded with the BYPASS instruction having opcode of “FF”. Bypass register is loaded

with a logic one via TDI and captured value is compared with the logic zero. Then loading By-

pass register with a zero and TDO is compared with previously scanned in value of one. Bypass

register is again loaded with a logical one and comparing captured value with logic zero. Figure

5.1.1 shows the simulated response of the bypass test covering all the above mentioned scenario.

Capture, shift and update operations of bypass register after decoding BYPASS instruction is

verified by this test.
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Figure 5.1.1: Waveform of bypass test

5.2 Test logic reset test

Test logic reset instruction is verified by placing TAP controller in reset state by both hard

reset and soft reset. TAP FSM transverse through different states as per the SVF commands.

Figure 5.2.1 shows the simulation result of the test. The default decoded instruction is IDCODE

instruction with opcode value of “0C”. The test verifies if the instruction decoder selects idcode

instruction when the TAP is resetted by hard and soft reset. When TAP FSM enters capture state,

Idcode register (32-bit) value is captured in the reset state. In shifting state the captured idcode

value is being shifted out through TDO. If the correct value is shifted out then idcode register

is verified alongwith reset of TAP controller. So it is checked that default instruction decoded

is Idcode when reset occurs. After that instruction register is loaded with other instruction then

Idcode. Same scenario is verified for soft reset by applying consecutive five 1’s to the TMS. By

applying five consecutive one to TMS, TAP controller state comes to Test logic reset state of

the FSM. IDCODE instruction decoded. Capture, shift and update operations of idcode register

is verified by this test.
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Figure 5.2.1: Waveform of test logic reset

5.3 Extest test

Extest test is verified by placing the boundary scan register between TDI and TDO. Instruction

register is loaded with PRELOAD instruction of opcode “01”. After the boundary scan chain

is loaded with even pattern (even pins set to 1) by shifting bits through TDI. Here length of

boundary scan chain is 16, so the stimulus is clocked 16 times and shifted through TDI. Now

the instruction register is loaded with EXTEST instruction of opcode “09” which allows output

pins to be in control with the boundary scan cell. After Update-IR output pins gets updated with

the predefined values i.e. even pattern and they are compared with those patterns.

Boundary scan chain is loaded with an odd pattern (odd pins set to 1) through TDI and boundary

scan captured values from the previous even pattern are shifted through TDO and compared with

the expected value. Figure 5.3.1 shows the simulated response of the extest test covering all the

above mentioned scenario. The output pins are updated with opposite pattern after Update-IR

and consecutive Update-DR state. Capture, shift and update operation of boundary scan register

placed between TDI and TDO in Extest instruction gets verified by this test.
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Figure 5.3.1: Waveform of extest test

5.4 Extest train test

Extest_train test is verified by placing the boundary scan register between TDI and TDO. In-

struction register is loaded with PRELOAD instruction of opcode “01”. After the boundary

scan chain is loaded with even pattern by shifting bits through TDI. Now the instruction register

is loaded with EXTEST_TRAIN instruction bits of opcode “0F” which allows output pins to be

in control with the boundary scan cell. After Update-IR output pins are driven with the loaded

cell data from the predefined values and the output pins are compared with the expected val-

ues. AC EXTEST instruction is selected when AC test mode signal goes 1. In the RunTest/Idle

state when AC test signal is toggled at negative edge of TCK, the driver output will toggle and

driven with inverted data. Boundary scan chain is loaded with an odd pattern (odd pins set to

1) through TDI and boundary scan captured values from the previous even pattern are shifted

through TDO and compared with the expected value. Figure 5.4.1 shows the simulated response

of the test covering all the above mentioned scenario.
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Figure 5.4.1: Waveform of extest_train test

5.5 Failing scenario

Figure 5.5.1 shows one of the failing scenario for the idcode test. Here firstly TAP is in reset

state so the default decoded instruction is Idcode. Instruction register is shifted with the idcode

instruction bits. In the Capture-DR state, idcode register gets captured with the 32 bit Idcode

register value described in the BSDL file as per the design. This captured value gets shifted in

the Shift-DR state. The values shifted in the failing case as shown in figure 5.5.1 is all ones

which is incorrect. The decoded instruction was not correct so the value of idcode register was

not captured and hence resulted into miscompares.

Good Data Stream: 1000 0100 0001 0000 1000 0000 0001 0011

Bad Data Stream: 1111 1111 1111 1111 1111 1111 1111 1111

The idcode instruction was mentioned “02” in the BSDL file, so when SVF file got generated
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Figure 5.5.1: Waveform of idcode test

with this SIR value. Due to error in the BSDL file wrong instruction got decoded and failed the

test. So the BSDL file of the IP should be perfectly coded otherwise it could cause an error in

later stages also.

Thus, various simulation results for different tests like bypass register test, test logic reset test,

extest test, extest_train test were discussed.

53



Chapter 6

Conclusion

Boundary scan solves the problem of testing interconnects between IC’s and this DFT is found

in almost all IP and SOC being manufactured nowadays. This project presents the methodology

for verification of boundary scan. With minimal input required for the test pattern generation the

flow provides faster test content generation. No functional data is being used for the verification

of boundary scan. BSDL file generates test patterns of the required test selected based on the

information provided in the BSDL file. The generated test patterns are validated by integrating

in reusable verification environment. The reusability feature of OVM testbench environment

allows to use different test based on the user provided input. Faster time to market can be

achieved by using this flow of boundary scan verification. Boundary scan architecture and thus

BSDL verified at IP level allows seamless verification of boundary scan at SOC level.
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