Verification of Ethernet based
IP/Subsystem in Smart NIC

Project Report

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology

In Electronics & Communication Engineering

(VLSI Design)
By

Mit Patel
1SMECV13

NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

Electronics & Communication Engineering Department
Institute of Technology
Nirma University
Ahmedabad - 382 481
May, 2020

Verification of Ethernet based
IP/Subsystem in Smart NIC

Project Report

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
In Electronics & Communication Engineering
(VLSI Design)
By

Mit Patel

1SMECV13
Internal Guide: External Guide:
Dr. Usha Mehta Manan Desai
Professor, Engineering Manager,
Institute of Technology Intel Technology India Pvt Ltd.

Nirma University
NIRMA
< UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

Electronics & Communication Engineering Department
Institute of Technology
Nirma University
Ahmedabad - 382 481
May, 2020

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Technology in
VLSI Design at Nirma University and has not been submitted elsewhere for a degree.

2. Due acknowledgment has been made in the text to all other material used.

Mit Patel
18SMECV13

i NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

Certificate

This is to certify that the project entitled “Verification of Ethernet based IP/Subsystem in
Smart NIC” submitted by Mit Patel (1IS8MECV13), towards the partial fulfillment of the re-
quirements for the degree of Master of Technology in VLSI Design, Nirma University, Ahmed-
abad. The record of work carried out by his under our supervision and guidance. In our opinion,
the submitted work has reached a level required for being accepted for examination. The results
embodied in this major project, to the best knowledge, haven’t been submitted to any other uni-
versity or institution for award of any degree or diploma.

Dr. Usha Mehta Dr. Usha Mehta

Internal Guide PG Coordinator - VLSI Design
Dr Dhaval Pujara Director

Head, EC Dept. Institute of Technology

Date : Place : Ahmedabad

To whomsoever it may concern

This is to certify that “Mr Mit Pareshbhai Patel (1ISMECV13)”, a student of MTech in VLSI
Design from “Institute of Technology, Nirma University” worked in “Intel Technology In-
dia Pvt. Ltd.” as an intern during 3" June 2019 to 22" May 2020. During this period, he
was found regular and had done his project on “Verification of Ethernet based IP/Subsystem
in smart NIC”, under my supervision.

He has worked with utmost dedication and high level of engineering and analytical competence.
We wish him all the best for his future endeavors.

o

External Guide:
Manan Desai
Engineering Manager
Intel Technology India
Bangalore

Date : Place : Bangalore

i1

mananrde
Placed Image

Acknowledgment

“Learn new things is an opportunity, but a chance given to implement what you have learned
is a bigger opportunity.” For me, developing and evolving of this project has been very critical
and joyful throughout out a year. The inner gratification for the accomplishment of the project
succesfully would not be complete Without mentioning organization and mentors that helps me
to complete this project work throughout year. Their support and motivation made my efforts
fruitful.

Foremost, I extend my deepest gratitude to “Manan Desai (Manager)” and “Himanshu Rawal
(HiringManager)” for giving me the opportunity to work with their group and guiding me for
this challenging project.

I do sincerely appreciate my teammates “Avni Patel”, “Heena Mankad”, “Sharvil Desai” and
“Mohit Rana” for their constant assistance, support and constructive suggestions in the better-
ment of this project, without which this would not have been possible.

I cordially extend my profound gratitude to thesis committee: “Dr. Usha Mehta” and “Dr. N.M.
Devashrayee”, for their motivation, valuable advises during project work.

Last but not the least, I would like to take this opportunity to thank my family, friends and
colleagues for their help and valuable suggestions from time to time.

Mit Patel
18MECV13

11

Abstract

Verifying system is very important aspect from the cost perspective, time to market is greatly
impacted by it. As silicon-chip is becoming more complex, nowadays it is very demanding that
we achieve completeness in verifying design on or before desired time. There are two cate-
gories for verification process - the first one is tool based process and the second one is different
methods of verification. Demand for proper guidelines of different processes and methods are
escalating to achieve good quality of verification. What need to be done is about processes and
how to be done is about methods.

During my project work industrial process are followed for verification of single module in the
IP. Developing robust, reusable and highly configurable structure is described here. Important
aspects and key points while following process of verifying design is described here thoroughly.
Impact of configurations provided in the module level structure on the subsystem level structure
is explained. Design behaviour under different excitation is studied thoroughly as prerequisite
of the verification process. Highly configurable verification structure is developed, to make it
reusable. To cover all the corner cases for module, testplan is prepared and maintained the ver-
ification process. Also, functional coverage plan is prepared to ensure required coroner cases
are covered in the verification process.

During project work, I studied important aspects of subsystem that is mainly focused during
verification process. At this level, mainly top level interface related coverage are coded, other
required coverage is collected from sub-block. For subsystem coverage tracking HVP is main-
tained, also all coverage are coded using proper methods, so that only required coverage can be
enabled keeping others disabled. To achieve verification closure we need coverage numbers up
to the marks, for that we run regression on weekly basis to generate high randomization. This
repetitive work is automated using perl automation script. That can generate report for better
bucketization of errors and failures. In the later part of thesis sim profiling is described for
improving real time of simulation. Thesis also shows different performance testing scenarios
generated for the subsystem to eliminate performance bottlenecks.

v

Table of Contents

[Umniversity Certificate|
[Company Certificate]
[Acknowledgment|.

[Listof Figures|
List of Abbreviation|

(1__Introductionl
(1.1 Ethernet System Architecture]

(1.3 Objective] e e e
[T.4 Synopsys Debug Tool Verdi [8].
(1.5 Verification process for different Levels|

[2 Literature Survey|
2.1 Fundamentals of Ethernet [3]]|

22 Standards of PCIE].
2 MB lasses|

3T _UVMTEST. - -« v v v et e e e et e e e e

232 UVMEnvironmentl 0oL

B3__IP verification|

(3.1 Basictenetsof UVM [L]| o
(3.2 Detailed study of designundertesty
(3.3 Vertficationplan|. Lo
[3.4 Prepare architecture for verification environment|
(3.5 Implementationof tests|
[3.6 Functional Coverage|
(3.7 Automation using SCripting].

4 Verification of Subsystem|

M.T Subsystem Verification Flow [2]

4.1.1 Top Level View|. . .

1 rification environment!o . .o e e e e e e

4.2 Reuse of IP verification components| 23

“.3 Coveragereuse| e 23
“.3.1 Hierarchical Verification Plan| 24
4.3.2 Unique coverage coding method| 24
4.4 Performance Testing| L L. 27

. m Profiling]
4.5 Sim Profiling] 27
5 Conclusion| 29
[References| 31

Vi

List of Figures

(1.1.1 Ethernet Subsystem| 2
RITOSIModel[9]. o e 6
2.1.2 Ethernet Packet Frame [10] 7
[2.2.1 PCI Express standards|, 7

3.1 Basic UVM Testbench [7]]] 8
2.3.2 UVM Class Hierarchy [7|. 9
3.0.1 Verification Process| 11
(3.2.1 Memory Aligner] 13
[3.3.1 Sample testplan|. 14
3.4.1 Test Bench Architecturel 15
[3.5.1 Verification Componenets|. 16
B2 UVMDemoten oL 17
[3.6.1 Sample Functional Coverage| 18
[3.6.2 Test Bench Architecturel 19
[3.7.1 Report generated from script| 20
“4.1.1 Subsystem Verificatton Flow| 22
4.2.1 IP verification components| L. 24
4.2.2 Integrated Verification environment| 25
M3T1Basicflow for HVPI2] e 26
4.3.2 With/without user defined method for coverage| 27
“4.4.1 Ethernet Subsystem| 28
4.5.1 VCS Report for Time Profile| 28

vii

List of Abbreviation

NIC - Network Interface Controller

OSI - Open System Interconnection

PCIE - Peripheral Component Interconnect Express
UvM - Universal Verification Methodology

RTL - Register-Transfer Level

1P - Intellectual Property

SoC - System on Chip

DUT - Design Under Test

TLM - Transaction Level Modeling

CG - Cover Group

viii

Chapter 1

Introduction

This chapter comprises of brief introduction about the project. It includes basic information
about smart NIC and Ethernet subsystem. Motivation and objectives of the project are briefed
here. During this project verdi tool of Synopsys is used for debugging tests and coverage.
Fundamental and some advanced features of verdi are briefed in this chapter. In thorough
verification flow, seven levels of verification are critical, these seven levels are discussed at the
end of the chapter.

1.1 Ethernet System Architecture

Figure[I.1.Tshows high level Ethernet IP architecture.

It comprises of mainly three subblocks - Address translation unit, Packet processing and Mac
Ports. PCIE interface is used at the one of the end points. PCIE is explained in the following
chapter. Basically, host interface acts as entry point of the system. PCIE is connected with
personal computer on the other side. Any packet coming from personal computer is entered
in the ethernet from this host interface. Then packet is sent to packet processor, where all
the processing related to the header is done. If we enable address translation unit, then I/O
virtualization is applied to the packet address. Then packets are sent tho physical layer. MAC
ports provide connection to the physical layer. It may possible that in some case, speed of
processing of every block could not be synced, to overcome that FIFO is used at the input and
the output side of the subblocks. This ethernet system is a part of networking card, used in
personal computer to interact with the network of the computers.

1.2 Motivation

The main motivation for this project is to understand industrial verification flow in detail, learn-
ing of various tools those are used to debug failures, understand and prevent the additional
factors that affects while verifying the design. UVM - Universal Verification Methodology - is
currently the most advanced and broadly used verification methodology in verification domain,
to work on UVM is also one of the motivation for this project.

1

PCIE Interface

1:<16f;’2><8f,-4x4
Host Interface
* |
v §
Address Packet
Translation Unit Processor
Mac Ports

l

Physical Layer

Figure 1.1.1: Ethernet Subsystem

1.3 Objective

The core objective of this project is to carry out functional analysis of design under test to
make sure that system will behave correctly as per the given input output relation. It aims to
plan and perform thorough functional verification and functional coverage of a system under
test. To achieve above goals verification base structure is to be developed with properties like
re-usability, effectiveness and robustness for design under test and to be reused in subsystem
verification environment.

1.4 Synopsys Debug Tool Verdi [8]

The verdi is a debug tool of Synopsys. It enables in-depth debug for deisgn and verification.
It simplifies complex and time consuming debugging process and merge diverse design and
verification environment. Verdi uses powerful technology which comprises complex and queer
design behavior. [§]]

Basic debugging features provided by synopsys verdi:

e To analysie different values at different simulation time, we can dump fsdb file in verdi

e Verdi provides waveform comparision for fast signal database (FSDB) file.

2

e We can easily trace hierarchy of the signal

e Schematics and block diagrams displays logic of the design and connectivity between
blocks.

e We can easily study and understand the operation of the finite state machine using intuitive
bubble diagram.

The Verdi provides some advanced debug features also:

e We can automatically trace signal transitions across the clock cycles. That helps in the
signal analysis.

e We can generate time-structure combined diagram using verdi, to analyze cause-effet
relationship.

e We can debug assertion failure easily in the verdi.
e We can annotate any time stamp in the verdi, to make debug quicker.
SystemVerilog Testbench debug with:

e We can debug even test bench environment with verdi, as it supports full source code.
Verdi supports UVM libraries, too.

e We can easily understand the testbench environment, as verdi allows to navigate through
all classes, it allows tracing of class relationships and inheritance.

e We can record transactions of any signal. That helps us to understand post simulation
verification environment. [§]]

1.5 Verification process for different Levels

For some portion of the SoC design, third party source are reused. The major issue with reusing
third party source is quality. Hence quality is critical for any intellectual property. Configuari-
bility makes corner cases verification very important. With increasing configuarability of the
IP, complexity also increases, which makes quality even more critical for the IP. Thorough ver-
ification is very important for the IP, because late bug reporting causes delay in tapeout, which
affects time to market window. Verification process for different levels are listed here [6]:

1. Unit-level - This is very critical foundational level, that deals with units and elemets which
re root parts in any configurable IP. Verification at this level is very critical, as bugs found
later at this level will cause problems at subsequent levels.

2. Module-level — This is user configuration level, based on requirements of the performance
and topology configurations will be implemented in the SoC. At this level, IP should be
compatible with other functionality of the design. Vendor should verify it first, and results
are to be made available for customers.

. SoC-level — At SoC level, drift verification is done. Drift verification means, vendors
verify the SoC release by release.

. Design flow tool verification — Tools used to configure the IP are verified at this level.
Tools can be controlled by either command-line or graphical-user interface or both.

. Interoperability — Results for AMBA, AXI and other protocols are demonstarted by ven-
doors at this level. Also, intergartion of EDA tool and verification IP is demonstrated.

. Customer module and SoC verification — Occurs during all the phases like design, tapeout,
debug etc. IP should be implemented, integrated and verified at this level.

. Customer, system-level user and quality experience - system house and end-customer
system life cycle testing are done at this level.

Chapter 2

Literature Survey

Internet comprises of seven different layers, all the seven layer together is called OSI model.
Data-link layer includes Ethernet. This chapter gives brief about the OSI model and how packet
is formed in different layer. Comparison between “the current setup where we plug everything
into the router” and “the old setup where long co-axial cable was used” is also discussed. PCIE
link is used between Ethernet subsystem and computer. This chapter includes different genera-
tion wise transfer rate and throughput supported by PCIE link. Few SoC Verification challenges,
process variation testing, some pre-requisites to reduce the verification challenges is discussed
here briefly. In the last part of the chapter basics of UVM, UVM inbuilt class hierarchy and
standard UVM verification environment is briefed.

2.1 Fundamentals of Ethernet [3]

OSI stands for “Open System Interconnection”. Telecommunication and computing system are
characterized and standardized by OSI model. Inter operability of various communication sys-
tem using standardized communication protocols is the major goal of OSI model. OSI model
divides any system into seven abstract layers. Figure shows layers of OSI-model.

So, Internet is made up of seven different layers. Data Link layer of the OSI-Model includes
Ethernet. Back in 1980s, one long co-axial cable was used to connect all systems. With that
kind of the setup only one device could send data over a network at a time, so the system had
to be designed around that because in those days, computing hardware was costly. When a
computer in the network wanted to send some data, it first had to send a special set of bits on
the network, which basically equates to “I want to send something, please be ideal”. This initial
sequence of bits is called the preamble. If two devices, at the same time, send the preamble bits
then they would detect this conflict and wait for a random amount of time before trying to send
data again.

Device can send any information if and only if it has sent preamble successfully. Information
that could be sent over network is limited, in order to ensure that every device gets a chance.
If any device wants to send more information, then that data should be divided into multiple
parts and then those smaller data can be sent over the network. These smaller pieces of the
data is called ethernet frame. In this communication of the data, target device should he located

5

The 7 Layers of OSI

Transmit '..r& Receive
Data User Data

|. Application (Layer 7) |

| Presentation (Layer 6) |

|' . Session [_Layer 5) - |

|- Transport (Layer 4) |

[Network (Layer 3) |

Data Link (Layer 2) \

Physical (Layer 1) |

———- Physical Link e——

Figure 2.1.1: OSI Model [9]

correctly and carefully, so that information reaches to the correct target device. To locate the
target one unique number is used with every devices connected in the network. That unique
number is called MAC(Media Access Control) address. This MAC address is unique for any
device. It is assigned with rhe vendors. After sending preamble bits, pause bits are sent, theses
pause bits are called start delimiter. After the delimiter target MAC address and source MAC
address are sent. If data is to be sent to all devices as broadcast, then target MAC address is
not sent. After MAC addresses ether type is sent. This is a bit tricky information. It serves two
purposes. If the number in this field is less than or equal to 1500, then it is total length of the
ethernet frame. If the number in this field is greater than or equal to 1536, the it is type of data
contained in the ethernet frame. Nowadays it is used to indicate content of the frame rather than
length. After this information checksum is sent. Checksum verifies that data is not corrupted
in the transport. These all fields together called ethernet frame. After 12 silenced bits, again
information can be sent. If we compare this with present scnario, then it is pretty similar. Today
we have intelligent switches and routers to transfer multiple data at the same time, throughout
these year ethernet standards are pretty much unchanged.

2.2 Standards of PCIE

PCIE stands for “Peripheral Component Interconnect Express”. It is used to connect personal
computers to Ethernet hardware. PCIE is a standard for high speed serial computer expansion

6

Preamble Start frame delimiter Ethernet data Interpacket Gap

7 octets (bytes I octet (byte) b4—-1522 octets (bytes) 2 octets (bytes)

A
Destination Source Ethertype Payload FCS
6 octets (bytes) 6 octets (bytes) 2 octets (bytes) 46-1500 octets (bytes) 4 octets (bytes)

Figure 2.1.2: Ethernet Packet Frame [10]

bus. It also supports I/O virtualization. PCIE has replaced older PCI. Topology used by both
these cards are different. In PCI parallel bus is used for data transfer. While in the PCIE point to
point communication is done. Hence, PCIE supports full duplex communication. Five different
size are available for PCIE - x1, x2, x4, x8, x16. In the physical slot of PCIE card, we can not fit
any PCIE card. Slot size should be greater than or equal to size of the card. For example, @16
cannot be put into @8 or @4 slots. Also, we need to take care of number lanes supported by
physical slot. It may possible that supported lanes may not be equal to their actual size. Letter
“x” tells us the physical dimension, and letter “@” tells us the number of lanes supported by
slot. Figure[2.2.1] shows PCIE standards. [11]

PCIE Transfer Rate Throughput

Generation (GT/s) x1(MB/s) x2(GB/s) x4(GB/s) x8(GB/s) x16(GB/s)
1.0 2.5 250 0.5 1 2 4
2.0 5 500 1 2 4 8
3.0 8 984.6 1.969 3.94 7.88 15.75
4.0 16 1969 3.938 7.88 15.75 31.51

Figure 2.2.1: PCI Express standards

2.3 UVM Base Classes

UVM stands for Universal Verification Methodology. It is derived form OVM(Open Verifica-
tion Methodology). UVM is highly used verification methodology in the industry. The UVM
provides generic functionalities like copy, print, compare, configuring database etc. Every com-
ponent of a environment has a specific role, like driver class object only deals with driving sig-
nals to the DUT, monitor class object only deals with sampling the signal transactions on the
interfaces of the design.

UVM is a wrapper prepared around system verilog. Different virtual classes are defined in the
UVM to standardize the methodology. These virtual classes are UVM inbuilt libraries. Theses
base classes have some virtual methods and tasks defined in it. Verification environment is de-
veloped by extending theses library classes.

There are three main UVM base classes.

1. UVM Object
2. UVM Component
3. UVM Transaction

tb_top

uvm_test

componant 5

campanent 4

interface

Figure 2.3.1: Basic UVM Testbench [7]

Figure [2.3.1] shows, top level view of testbemch. That is a holder of every verification com-
ponents. In the top module clock is generated. Then clock is given to the interface module.

8

Interface module is having definition of all virtual interfaces used in the verification environ-
ment. All virtual interfaces are provided to the environment by configuration db. By using
configuration database, we can propagate any object values to the other components in the hi-
erarchy.

2.3.1 UVM Test

A testcase is a pattern to verify specific feature or scenario of the design. Development of
testcases depends on test plan. Test case is developed as per the target feature or scenario
from the test plan. Test class is extended from uvm_test. Instead of writing test cases for
each and every scenarios of the test plan, uvm environment is used. This environment can
contain all verification components, hence we just need to reconfigure the environment using
environment knobs to generate different scenarios to verify different features. We can provide
some tweak knobs like enable/disable bit for agent, default sequence for the test, enable/disable
bit for coverage model etc.

UVM class hierarchy is shown in figure below:

uvm_report_object ‘
A

uvm_sequence_item

uvm_sequence_base

» uvm_component <«
A A A A A 4 A
uvm_driver uvm_subscriber
uvm_monitor uvm_scoreboard
UVm_sequencer uvm_random_stimulus

uvm_agent uvm_env

uvm_test

Figure 2.3.2: UVM Class Hierarchy [7]]

2.3.2 UVM Environment

A uvm_environment is a container of various uvm_componenet of test bench. If we directly
instatiate uvm_componenets in the test class, then we need to make changes in test class, ev-
ery time there will be some change in the way of uvm_components are connected with each
other. Besides, uvm_test class in not reusable as those are relied on the particular scenarios.
Hence uvm_components are not directly instantiated in the test class, they are instantiated in
the uvm_environment. To provide high controllablity and configurablity to uvm_environment,
various knobs are to be used. it provides loose coupling between test class and environment.

(7]

10

Chapter 3

IP verification

SoC comprises of many IPs. Major issue while reusing IPs for SoC design is quality of the
source. With increasing complexity of the IP, its quality becomes more critical, and verification
of the IP becomes difficult. We need to make sure that every corner cases of the highly config-
urable IPs are verified thoroughly.

During the project work, I followed below steps while verifying the Ethernet subsystem IP.

e Detailed study of design under test
e Prepare verification test plan

e Prepare coverage points

Prepare architecture for verification environment

Implementation of tests

Functional coverage
e Review

Above steps are followed one by one, however verification is not a straight forward process, we
might need some re-spinning in the process.

DESIGN

\

S Develop Test Cases
Create Testplan N
—_—

Develop Environment

Debug Design

Review and Analysis

T~ Regression
Debug Design/

Figure 3.0.1: Verification Process

11

3.1 Basic tenets of UVM [1]

Encapsulation is supported by UVM, UVM supports OOPS concepts. Hence, we can define
our own coding standards and methodology to be followed throughout the verification. We can
prepare coding template for the class to be implemented later by using virtual class and virtual
methods. That is how we can provide encapsulation to our environment. By default, every func-
tion is encapsulated in the uvm_component and uvm _object classes. Those are virtual classes
having declarations of the virtual methods and tasks within them. For establishing communica-
tion between classes, we can use TLM ports supported by UVM.

Types of TLM ports:

e Get port
e Put port
e Analysis port

Get port and put are by default blocking ports, analysis port is by default non-blocking one.
The uvm_sequences are used to generate transaction in the verification environment. The
uvm_sequence is a class extended from uvm_object. It includes body task in the class def-
inition. We need to register uvm_sequence with uvm_sequencer, that act as container of the
uvm_sequence. This duo is connected with the uvm_sequence using get port, to transfer gener-
ated stimuli.

3.2 Detailed study of design under test

Specifications of DUT is understood as the first step of verification. Thorough study and un-
derstating of the DUT behaviour is very important, before starting actual verification process.
Any misunderstanding in the DUT behaviour could cause false verification. That forces us to
change structure of verification environment. Once sturcture of the environmet is finalized, it
should not be changed, to avoid any additional cost and delay in tapeout. False verification also
causes holes in the verification. Here, holes means any unverified feature or corner cases of
DUT. System holes can also affect market value. Hence proper thorough understanding of the
design in very important as the first step of verification of any design.

During my project, I used memory aligner as DUT. Memory aligner is shown in figure [3.2.1]
As name suggests, Memory aligner is used to align different size of memory. It has total of
1024 bytes of memory storage. At a time, we can give input data of size 8, 16 or 32 byte to the
aligner. As shown in figure [3.2.1] credit_av gives total available empty memory in the aligner.
It will be in 2D words, if credit_av gives 128, it means (128%2%4) 1024 bytes are empty in the
aligner. If we try to write data of size greater than the available memory, than that data will
be dropped. Memory aligner follows FIFO principle, it gives first out, that is written in the
aligner first. Data_e informs aligner to take available data on the 32 byte Data bus. Valid values
for data_e are : 8, 16, 32, depends on the size of the input data. Credit_co informs aligner to
provides credits from the available credits to the data. Valid values for credit_co are : 1, 2, 4.
Value-1 for 8 bytes of data, value-2 is for 16 bytes and value-3 is for 32 bytes. At the right hand

12

320D
1959y

Data_e Aligner Valid
Credit_co DUT Ready
Credit_av Data_Size
DATA<32> DATA<32>

Figure 3.2.1: Memory Aligner

side of DUT, output signals are shown, valid signal informs data available at the output data
bus is valid for the current clock cycle. Ready signal informs aligner to send next data on the
output bus, on the output bus only 32 or 16 bytes of data will be available. Data_size shows the
size of valid data available on the Data bus. So, memory aligner is a typical multidimensional
FIFO with depth 1024 that accepts the data of 8, 16 and 32 bytes and gives the output data of
32 bytes.

3.3 Verification plan

Test plan is prepared to keep track of features and scenarios to be verified for the design. With
preparing test plan, coverage plan is also prepared to have list of cover points for which func-
tional coverage is to be implemented. So, that tests and functional coverage can be developed
simultaneously. Test plan includes all the scenarios and corner cases for the design, it also in-
cludes negative scenarios, to verify behaviour of the design under wrong or erroneous stimuli.
Test plan and coverage plan is prepared in the excel sheet. Along with scenarios to be tested,
which signal of the design to be randomized, how to generate specific stimuli, what checks we
need to do, etc are maintained in the spread sheet.

Sample test plan is shown in figure (3.3.1
Following three types of the testing scenarios are included in the plan.

e Valid data traffic

Write random number of data to aligner with fixed size

Write random number of data to aligner with random size

Write and read random number of data simultaneously

Generate overflow, write data even when empty slots are not available.

Generate underflow, read data even when aligner is empty.

13

Scenario description

What to generate

what to check

Basic Alive Test

Overflow Test

Back Pressure Test

Reset Test

Fifo Flush within traffic

Generate Traffic
Generate Reset and Clear and Clk

Genarate Traffic
Make Enable pin high
Generate the data with credit_co > credit_av

Generate Traffic
Make Enable pin low
Generate the data with credit_co > credit_av

Make enable low and generate the Data with proper Data_e and Credit_co
Generate Reset and Clear
Make enable high and generate the Data with Proper Data_e and Credit_cq

Make enable low and generate the Data with proper Data_e and Credit_co
Generate Clear

Make enable high and Generate the data with proper Data_e and Credit_c

Generate 5 packets and try to read more than 5 packets

Credit availble
Valid Pin
Output Data and Size

Output Data and Size
Vvalid Pin
Credit availble

Data Output and Data size
Valid Pin
Credit availble

Output Data and Size
Vvalid Pin
Credit available after transaction

Output Data and Size
Valid Pin

Credit available after transaction

Output Data and Size

Under run Test

Make enable high Vvalid Pin

Generate the data with credit_co > credit_av
Make enable pin low

Output Data and Size
Vvalid Pin
Credit available after the transaction

Over run Test

Generate 8 Byte of data with Data_e - 11/f and Credit_co- 1
Make Enable Low/High

Output Data and Size
Valid Pin
Credit available after the transaction

Negative Tetsing

Figure 3.3.1: Sample test plan

— Multi cycle scenario - Write data and make aligner full, then wait for till credits are
not available and then again start writing data

e Interrupt/Reset

— Generate random number of the data and start writing them to aligner, before it ends
generate reset signal

— Generate random number of the data and wait till it ends, and after resetting aligner
again start writing random data

e Invalid data traffic

— Generate erroneous data with injecting intentional error in the one the signal of
aligner and write invalid combinations

3.4 Prepare architecture for verification environment

In this step, basic structure of the environment is decided. Architecture of the environment
contains verification components and connections. Basic uvm architecture contains virtual in-
terfaces, uvm drivers, uvm monitors, virtual uvm sequences and scoreboards. We can not code
whole structure for every scenarios in the test plan. Hence, architecture is finalized in such way
that it is useful for every cases. Basic steps to decide testbench environment structure:

14

e Keep number of agents in the environment exactly equal to the number of DUT’s inter-
faces

e Prepare uvm transaction class, to finalize uvm sequences
e Finalize uvm base components like drivers, monitors and scoreboards.
e Finalize flow of base test, to check basic sanity flow of the design.

Finalized test bench environment is shown figure 3.4.1]

Test Bench

Virtual Sequence Test
Sequence Seqguence Seqguence

Verification Environment

Virtual Sequencer

| Agent Wr Scoreboard Agent Rd

Write Read
Sequencer Sequencer
Driver Monitor Monitor Driver R

Wr wr Rd d
. -

Write Interface Read Interface

DUT

Figure 3.4.1: Test Bench Architecture

3.5 Implementation of tests

After finalized test bench structure, one base test that verifies basic traffic scenario is coded.
To develop base scenario, all the base and virtual sequences are coded. Virtual sequences are a

15

static container, that contains all the sequences. All uvm sequences are instantiated in the virtual
sequence. Use of virtual sequence gives advantage of loose coupling, over the use of direct uvm
sequences in the test class. test class is extended from uvm component , that has predefined
phases like - build phase, connect phase, run phase etc. In the build phase virtual sequence
and environment are instantiated. All the configurations of environment for the particular tests
are done using uvm config db. Environment is also uvm component. In the build phase if the
environment required agents are instantiated. Similarly, in the build phase of agents drivers and
monitors are instantiated. All the TLM port connections are done in the connect phase of the
environment. After implementing base test class, as per the prepared test plan test classes are
coded extending from this base test class.

One base test is prepared first. In the test file, all virtual sequences are instantiated. Virtual
sequences have different multiple uvm sequences, each sequences are developed to generate
particular stimuli for the DUT. UVM sequences also contains TLM get port, using this get
port, generated stimuli are sent to uvm driver. Connection between UVM driver and UVM
sequences are done in the connect phase of the environment file. UVM driver are connected to
the DUT through virtual interface. UVM monitors are also developed to continuously monitor
the values of the DUT interfaces, those sampled values are then sent to uvm scoreboard using
TLM analysis port. Scoreboard are developed with all the required checks those are required to
ensure the given I/O functionality of the DUT.

Scoreboard
Tx Rx
Monitor Monitor
uw w
3 3
e = . . = =
® = ——> Tx Driver P Rx Driver «—— o §
jm 8 J o
(o] (2]
o ©
- -

Figure 3.5.1: Verification Componenets

In negative testing, sequence generates erroneous stimulus and inject in the DUT through driver.
Due to the erroneous stimulus, actual and expected values won’t be matched in scoreboard and
scoreboard will shout in this case, however this error is intentionally injected, hence we have
suppressed the error in this case using uvm report checker. Figure[3.5.2] shows code snippet for
the demoting uvm error.

16

class error_demoter extends uvm_report_catcher;
function new(string name="my error_demoter");
super.new (name) ;
endfunction

function action_ e catch();

“uvm_info(get_type_name(), "UVM_CATCHER", UVM_HIGH)
if(get severity() == UVW ERROR && get message() == "----------- Actual Packet is not recieved--------
)
“uvm_info(get type name(), "UVM CATCHER INSIDE", UVM HIGH)

set_severity (UVM TINFO);
return THROW;
endfunction : catch
endclass : error_demoter

Figure 3.5.2: UVM Demoter

3.6 Functional Coverage

Functional coverage is used to keep track on the progress of the verification process. System
verilog provides covergroup and coverpoints to code the functional coverage. For corner cases,
functional coverage are coded to check if it is verified or not. Functional coverage for covering
values of the credit_av signals of the aligner. That coevarge shows if scenarios meets aligner
full and empty conditions ever. Some cross coverage is also implemented to check scenarios
like, reading white aligner is empty and writing while aligner is full, etc.

Traditionally, verification quality is measured with the code coverage. How thoroughly HDL
code is exercised is reflected in code coverage. Code execution is traced using code coverage
tool - verdi. Verdi provides some coverage metrics for code coverage, that includes line, block,
fsm states, conditions, branches, toggling of bits, event etc. However there some limitations
with code coverage. we can not say, design is perfectly verified only on the basis of code
coverage. To ensure the verification process closure functional as well as code coverage is
achieved up to the mark. Functional coverage is all about, how many corner testcases, negative
scenarios, basic scenarios are covered during regression run. Functional coverage also allows
combinations of two or more different fields. For example, reading while FIFO is empty, writing
while FIFO is full. These examples say, we need to cover read operation when empty flag is
high, and cover write operation when full flag is high. These are example of cross coverage,
basically combination of different values of different fields. Functional coverage also allows
relationships, "OK, I've covered every state in my state machine, but did I ever have an interrupt
at the same time? When the input buffer was full, did I have all types of packets injected? Did
I ever inject two erroneous packets in a row?”

Systemverilog provides following features for coverage:

e It provides point coverage for single value, multiple values. Values can also be in the
form of expression.

e It provides Cross coverage for combinations of different fields.

e Automatic bin can be generated, or we can manually define bins that can have single
value, multiple values, sequences, toggling etc.

17

covergroup aligner cg
credits : coverpoint credit av {

bins emtpty = { b
bins full = {0};
}
write_data : coverpolint data e {
bins write = {1,3,7};
illegal bins invalid com = {0,2,4,5,6};
}
write op : coverpoint valid ({
bins write = {1},
bins ideal = {0};
}
read op : coverpoint raedy ({
bins read = {l};
bins ideal = {0};
}
read empty : cross read op, credits ({
bins read em = binsof(credit_av) intersect { };
}

write full : cross write op, credits {
bins write f = binsof(credit av) intersect {0};
}

engroup

Figure 3.6.1: Sample Functional Coverage

Planning for functional coverage includes documentation of all coverpoints required to be cov-
ered while verifying the system. Planning of functional coverage is started basically with the
planning of test cases. Execution of test cases are observed by functional coverage. Functional
coverage is code written to track whether important values and sequences are ever generated at
particular interface. One of the factors used to observe the verification progress is functional
coverage, hence it is very important aspect to any verification approach. We can say that all
scenarios from testplan has successfully verified, when we achieve 100% coverage number for
functional coverplan. Coverage written to examine the value within single object is called point
coverage. Coverage written to examine the combination of two or more different fields is called
crossing of coverage. Verdi automatically calculates code coverage. Code coverage is related
to the number lines in the code, being executed during the simulation. 100% coverage can be
achieved for code coverage. However, it is not meant that functionally we achieve complete
verification.

On the other side, functional coverage is code written to examine some of the corner cases. It
is totally dependent on the coverage plan. It may possible that coverage plan has some hole. In

18

that case we can achieve functional coverage 100%, however code coverage in that case can be
lower. Hence, either code coverage or functional coverage alone will not help us for verification
closure. It is required to achieve both coverage metrics up to the mark. Figure shows four
places where functional coverage points are added. [5]

Input Checker!
monitar scoreboard

:
| :ﬂ ﬂ:—\

sic-world.com

Figure 3.6.2: Test Bench Architecture

e F1 - Class codded with these set of coverage points is instantiated very near to the ran-
domization and before the driver. In some cases, driver is not sending randomization
object to the DUT, coverage sampled with this condition are not acceptable.

e F2 - Class codded with these set of coverage points is instantiated inside a input monitor.
It has functional coverage on stimulus that DUT is being driven with.

e F3 - Class codded with these set of coverage points is instantiated standalone. Internal
states of DUT, like FSM states, or some registers are monitored in this class.

e F4 - Class codded with these set of coverage points is instantiated inside a output monitor.
It has functional coverage on output of the DUT.

3.7 Automation using Scripting

In the developed test cases, there are two types of cases coded - to generate directed scenario and
to generate some random scenario. For rigorous verification random test cases are run multiple
time to generate various random scenario. One perl script is developed to analyse the regression
result. This script runs as post simulation process to over regression result to extract failures
and some important information.

Following information are extracted from the results using perl script:

e How many times one error is being repeated

e Failure rate of every feature and scenarios

19

Total failure rate of all scenarios

Detailed list of passed and failed tests

Errors causing failures

Pointer to the systemverilog file for failure

Pointer for log file

Original commands of each failure

Date
ses
Report
ErrorType
NO ERROR
UVM_ERROR
P
Report
TestName
Base_Test

P
Total
Passing %
Failing %

P

Test_Name
Base Test.l
Base_Test.2

ses
summery
Occurance
24
2
wrx
Summery
Failing Occurance
2

wax
26

92%
8%

P

Seed
3a4e65b6
34a29e9¢c

Tue Dec 321:57:40 2019

ses P ses P
P e P e
wx aer wx wex
wen wee wen wer
Passing Occurance Passing %
24 92%
P e P e
wen wee wen wer
Result ErrorType Error File_Path
FAIL UVM_ERROR UVM_ERROR -@ 308762560 ps - Error Text - Scoreboard error. </nfs/....../uvm_scoreboard_core.sv(34)>
FAIL UVM_ERROR UVM_ERROR -@ 211512640 ps - Error Text - Scoreboard error. </nfs/....../uvm_scoreboard_core.sv(34)>

Figure 3.7.1: Report generated from script

20

/nfs/....

[nfs/.

P

Log_file
../Regression.test.1
JRegression.test.14

Chapter 4

Verification of Subsystem

Subsystem comprises of multiple IPs. Efforts required in the verification of subsystem is re-
duced by reusing IP verification environment. We reconfigure the subIP environment to make it
compatible for subsystem. At subsystem level, we do not need thorough verification of all IPs,
instead we need to check interfaces between all IPs. Our main focus for verification at this level
is on connections and interfaces.

4.1 Subsystem Verification Flow [2]

4.1.1 Top Level View

During subsystem verification, first step is to study subsystem I/O functions. A detailed study
of subsystem behaviour under different stimuli and its structure is done. Any misinterpretation
of the behaviour can cause re-spinning in the later stage, that can affect verification cost and
time.

4.1.2 Verification Plan

Detailed plan for the Verification of subsystem is done here. As a plan for verification func-
tionalities to be verified are listed. We identified IP components that can be reused for the
verification of subsystem. So that development time at subsystem level is reduced. Few sub-IP
sequences and coverage models are reused here. At subsystem level, main focus is to be verified
the interconnections between the sub-1Ps, rather than verifying functionality of each block or
sub-IPs deeply. Also, interface transactions between subsystem and TOP module is verified at
subsystem level.

4.1.3 Verification environment

Environment for verification of subsystem contains sub_IP verification components as well as
some specially coded components in subsystem architecture. For verification of subsystem
proper methods is to be selected that is best for the rigorous verification of subsystem. Combin-
ing IP verification components to make one whole subsystem environment is done first before

21

Subsystem level Top
view

Extracted subsystem level features

v

Subsystem level Verification
Plan

Extracted subsystem level features Holes and fine tuning

v

Subsystem level verification
and Debugging

Extracted subsystem level features

v

No Functional coverage closure

Extracted subsystem level features

Final Functional verification
closure

Meet verification
sign-off criteria?

Figure 4.1.1: Subsystem Verification Flow

stating verification process. Scoreboards are developed to ensure correct connectivity between
the components. This is very important process, as wrong connections can cause wrong [/O
functions. At subsystem level some basic components are developed for end-to-end functional-
ity check. Hence, subsystem is having its own uvm_driver, uvm_monitor, uvm_sequences and
checkers along with some reusable sub-IP components.

4.1.3.1 Subsystem level scenarios and debugging

At subsystem level, it is required to apply various stimuli that can generate different scenarios
for the purpose of functional verification. On the other side, it is not feasible to generate all
kind of scenarios at this level, because we also need to meet time to market. Hence, few test
cases are reused from sub-blocks. Also, some of the cases or code are reused form its older
version, to reduce the verification efforts. After developing sufficient amount of test scenarios
for subsystem, we start running those, and we start analysis of the failures. For this we run
regressions. To debug the regression failures is tedious task at this level. Thorough study of

22

the subsystem behaviour under any condition should be known to avoid unwanted debug time.
Proper messaging and coding standards are used while implementation, to make debug process
easy up to some extent. We also provide uvm_verbosity to all the messages to enable and disable
those messages while running regression.

UVM provides below verbosity levels for messages:

e UVM_LOW
e UVM_MEDIUM
UVM_HIGH

e UVM_NONE
e UVM_FULL
e UVM_DEBUG

In some case, we debug RTL bug with interactive session in the verdi. That helps us to debug
whole simulation with the break points.

4.2 Reuse of IP verification components

Integration of sub-IP’s verification components is done in subsystem environment of verifica-
tion. In this process few components are disabled by configuring knobs in particular block.
Figure [4.2.1] and figure [4.2.2] shows IP verification components and Subsystem verification ar-
chitecture.

General structure is having uvm_driver, uvm_monitor, uvm_sequences and uvm_sequencer. A
uvm_agent is a container, in which all these classes are instantiated. uvm_agent can work ac-
tively or passively. In the passive mode only uvm_monitor is instantiated in the uvm_agent.
In the active mode all class are instantiated in the uvm_agent. UVM provides TLM ports for
connectivity between the classes. Packets are sampled in uvm_monitors, then they are set to
uvm_scoreboards. The uvm_scoreboard is coded to implement checker between input and out-
put data. At subsystem level uvm_agents of sub-IPs are configured in such a way that they work
passively. Because, uvm_driver would not require at this level, subsystem is having its own
uvm_driver to send the data to sub-blocks.

4.3 Coverage reuse

Different functional coverage places, discussed earlier. Few of those are required at this level
also. Hence, IP functional coverage are also reused at this level. However, we do not require all
coverage setup from sub block.

To overcome this situation, we can have two ways:

e HVP - Hierarchical Verification Plan

e Unique implementation method

23

Scoreboard

Tx Rx
Monitor Monitor
w w
3 8
s = . . =2
@ = — TxDriver P Rx Driver «— & O
p 8 J o
(o] (2]
1] (]
= =

Figure 4.2.1: IP verification components

4.3.1 Hierarchical Verification Plan

HVP is maintained for the functional coverage reports after every regression run. From HVP
reports system holes are debugged and fixed, to get higher coverage number. Figure shows basic
flow for HVP generation.

Pros and cons of this method:

e Pros:

— Only required coverage adds number into total coverage percentage
— Required coverpoints or bins can be excluded

— HVP can be manipulated as per functional testplan
e Cons:

— It will not reduce wall clock time for simulation, rather it can be increased in some
cases

4.3.2 Unique coverage coding method

Here, we develop proper method to enable and disable particular coverage from particular sub-
block. Each sub-lock must follow that implementation method to make coverage reusable. Pros
of this method are:

e Rechecking of reused scenario is not needed
e wall clock time for simulation can be reduced

e Coverage database size is reduced

24

Subsystem Verification Environment

End to End Scorebhoard -
IP1
Scoreboard
Tx = Tx Rx
Maonitor ?n" Monitor Monitor
v
i)
e
c
g J
a Tx Driver IP1
L
2 s ¢ }
o =.— Tx Driver
=
0
o
IP2
.
= Rx
3, Tx Driver > . o
T IP2 Monitor
v
i)
2 |—>
@ Rx
= Tx .
o) Monitor
= Monitor
Scoreboard

Figure 4.2.2: Integrated Verification environment

4.3.2.1 User defined Macros
We have defined user defined macros ‘CREATE_COV and ‘COV_SAMPLE for instantiating

and sampling.

1. COV_CREATE(cg_name, instance_name, arguments, verbos)

e instance_name : name of the cg instance

e cg_name : covergroup name
e arguments : arguments used for covergroup

e verbos : verbosity level
2. COV_SAMPLE(instance, arguments)

e instance : name of cg instance

e arguments : arguments used while sampling

25

Run Regression Verification Plan

External User Data

E.g. Test caszes
Pass/Fail status

URG B Spreadsheet
Annotator

Annotated Verificati

Figure 4.3.1: Basic flow for HVP [12]]

Verbosity levels:
e COV_VERB_TOP
COV_VERB_SUBSYSTEM

COV_VERB_SUBBLOCK

COV_VERB_BLOCK
COV_VERB_MODULE

e COV_VERB_NULL

Verbosity is passed at two places, first is command line and second is covergroup instance. If
simulation verbosity is higher than or same as CG instance verbosity, then that covergroup will
be enabled, otherwise it will be disabled while simulation. Figure 4.3.2] shows sample code for
this method, comparing with normal system verilog method. Flow for calculating coverage is
set for subsystem team. Steps I have followed for this are listed below:

e Prepare coverpoint definitions

Filter reusable coverpoints and get those from sub blocks

Implement coverage for remaining coverpoints

Add features and meaures in the HVP as per coverage plan

Coverage debug

26

* Without Macros » With Macros

covergroup cg_abc_transaction; covergroup cg_abc_transaction ;
coverpoint a; coverpoint a;
coverpoint b; coverpoint b;
endgroup : cg_abc_transaction endgroup : cg_abc_transaction
function new (string name); function new (string name);
super.new(name); super.new(name);
cg_abc_transaction.new(); "COVERAGE_CREATE(cg_abc_transaction,
endfunction : new “" (), COVERAGE_VERB_MOD)
task ... endfunction : new
cg_abc_transaction.sample (); task ...

"COVERAGE_SAMPLE(cg_abc_transaction, ())

Figure 4.3.2: With/without user defined method for coverage

4.4 Performance Testing

Consider figure 4.4.1]

Only verification of features and behaviour under all possible stimuli is done by functional ver-
ification. However, features and functionality are not only concerns, also performance measures
like bandwidth, latency and reliability do matter. Performance testing will determine whether
the DUT meets performance measures under expected workloads. Chip sent to market with
poor performance metrics due to nonexistent or poor performance testing are likely to gain a
bad reputation and fail to meet expected sales goals. That’s why performance testing of the DUT
along with functional verification is carried out. Performance testing is not to find bugs but to
eliminate performance bottlenecks. We have written the performance test cases for Ethernet
subsystem to generate different workloads situations. As shown in figure Ethernet subsystem
has below components: PCIE Interface with 3 different configurations - 1x16, 2x8, 4x4; Ad-
dress Translation Unit; Packet Processor; 4 Mac Ports. Variants of performance testing: System
Topology — In this testing we configured DUT with different topology (such as -1 Mac Port and
1 PCIE Home, Multiple Mac port and Multi PCIE Home etc.) and ensured performance under
different situations. Cache miss rate — In this testing we configured the local cache of the sub
IPs to achieve different cache miss rate. (such as 10%, 50%, 100% etc.) Packet Size — In this
testing I built different packet size and ensured the performance of the system with those. To
generate different packet size, we used IPv4, IPv6 and VLAN headers. AT enable/disable — AT
is address translation unit, used for mapping between virtual and physical functions.

4.5 Sim Profiling

Sim profiling is a way to analyse program execution time. Complex code in system core logic
can increase time for simulation run as well as real time. To analyse execution time manually
for each and every block is very tedious. Manually, we need to analyse first, which block is

27

PCIE Interface

1x16/2x8/4x4
Host Interface
:]
v v
Address Packet
Translation Unit Processor
Mac Ports

l

Physical Layer

Figure 4.4.1: Ethernet Subsystem

taking long, then we need to modify core logic for that block. Instead this manual work we are
using VCS sim profiling tool to reduce human efforts. VCS sim profiling tool can be enabled

Time Summary View
compenent Time Percentage

@A
4364
2156 %
wwwwwwww 422
1580 %
€82

o7
SE3%
2

Figure 4.5.1: VCS Report for Time Profile

using below switches during compilation.
1. “elab_opts -simprofile=time”
2. elab_opts -simprofile=mem”

Figure [4.5.1 shows time profile results.

28

Chapter 5

Conclusion

Detailed knowledge of UVM and use of verdi tool for verification of deign. Detailed study of
design is very important as verification prerequisite step, to avoid additional time and cost in
the verification process later. Major challenge is coding IP verification components in such a
way that they can be reused at different levels. Along with this, It requires to re-spin the logic
of the uvm_monitor and uvm_driver few times, because of misinterpretation of DUT behaviour.
Hence, detailed knowledge of behaviour of the design is very importannt before starting actaul
verification process. Componenets of UVM supports phase wise simulation, to handle proper
begining and ending of each phase, pre-defined uvm_objecction is used.

Automation scripts is used as post processing of simulation to collect feature and scenario wise
failure reports. That reduces human efforts and process pf initial debugging is simplified. Also
sim profiling helps with collecting block wise clock timing report and memory report.
Subsystem is integrated version of sub-IPs, hence we can reuse as many sub blocks as possible,
at this level integration is very important process. Wrong connections can cause false verifica-
tion, that can add unwanted delay in tape-in. Also, at this level rather than thorough verification
of sub blocks, interfaces and connections are mainly focused for verification process. As many
configurablity as possible is must for environment. Beginning and end of every phase must be
handled carefully. Number of testcases developed are not important for verification closure,
rather code coverage and functional coverage must be up to the mark for closure.

29

30

References

[1] P1800.2/D7, ”IEEE Draft Standard for Universal Verification Methodology Language Ref-
erence Manual”, Oct 2019.

[2] Dilip Prajapati ”SoC Functional verification flow”, Dec, 2017.

[3] IEEE Std 802.3, "IEEE Standard for Ethernet”, published at New York, NY 10016-5997
USA, Sep, 2015.

[4] UVM cookbook, available at "https://verificationacademy.com/cookbook/uvm”.
[5] “Functional Coverage”, "http://www.asic-world.com/systemverilog/coveragel.html”.
[6] 7 Levels of verification cycle”, "https://www.edn.com/the-7-levels-of-ip-verification/”.

[7] ”Concepts of Virtual sequence and Sequencer”, "https://www.chipverify.com/uvm/uvm-
virtual-sequence”.

[8] Debug features of Synopsis verdi tool,
“https://www.synopsys.com/verification/debug/verdi.html”.

[9] 77 Layers of OSI MOdel”, "https://www.webopedia.com/quick _ref/OSI_Layers.asp”.
[10] How does Ethernet work, https://www.youtube.com/watch?v=5u52wbqBgEY”.
[11] ”PCI Express Standards”, "https://en.wikipedia.org/wiki/PCI_Express”.

[12] ”Basic HVP generation flow”, ”https://www.design-reuse.com/articles/42844/smart-
tracking-of-soc-verification-synopsys-hierarchical-verification-plan.html”.

31

	University Certificate
	Company Certificate
	Acknowledgment
	Abstract
	Table of Contents
	List of Figures
	List of Abbreviation
	Introduction
	Ethernet System Architecture
	Motivation
	Objective
	Synopsys Debug Tool Verdi verdi
	Verification process for different Levels

	Literature Survey
	Fundamentals of Ethernet EthernetIEEE
	Standards of PCIE
	UVM Base Classes
	UVM Test
	UVM Environment

	IP verification
	Basic tenets of UVM UVMReferenceManual
	Detailed study of design under test
	Verification plan
	Prepare architecture for verification environment
	Implementation of tests
	Functional Coverage
	Automation using Scripting

	Verification of Subsystem
	Subsystem Verification Flow VerificationFLow
	Top Level View
	Verification Plan
	Verification environment

	Reuse of IP verification components
	Coverage reuse
	Hierarchical Verification Plan
	Unique coverage coding method

	Performance Testing
	Sim Profiling

	Conclusion
	References

