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ABSTRACT

In power system different problem like Economic Load Dispatch (ELD), Unit com-

mitment, Hydro - thermal scheduling (HTS) and many more are present. For solving

mentioned problems different conventional method are present but for getting more ac-

curate and optimal solution soft computing techniques is important tool for it. Here ELD

problem is solved using Group leader Optimization Algorithm (GLOA). Economical load

dispatch (ELD) is an important aspect in power system domain in power system oper-

ations, controls, processes and scheduling are the different part where the necessity and

application of ELD are described. Convex and Non-Convex economical load dispatch can

be resolved by using classified based techniques and various soft computing techniques.

The Group Leader Optimization algorithm to solve ELD for minimizing the fuel cost

of power generation with various constraints like valve point loading. Group leader op-

timization (GLOA) is comparatively modern technique in optimization. Mathematical

models of this algorithm exemplify the efficiency, solution quality and convergence quick-

ness of the method and successful implementation of the algorithm on economical load

dispatch problems. Finally, from the simulation results it has been noticed that the pro-

posed way or method has given better results than other existing optimization techniques.
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Chapter 1

Introduction

1.1 Economic Load Dispatch

In electric power systems, Economic Load Dispatch (ELD) is used to accommodate

customers with excellent, reliable power supply at the lowest possible tariff. The operation

of generation facilities can be explained in normal conditions as producing electricity at

the most despicable cost to attend consumers efficiently, respecting any operating limits

of generation and transmission facilities. This is a key factor in allocating production to

units involved in the operation of the electrical system to meet existing constraints and

energy requirements. Fuel dynamics for advanced generating systems are significantly

nonlinear in finding an intervention approach without restrictions in the form of a fuel

cost curve.

1.2 Optimization

It is a performance of performing something (such as a plan, system, or determination)

as accurate, functional, or effective as much as achievable specifically we can say that

mathematical methods (obtaining the maximum or minimum of a function) involved in

this.
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1.3 Computation

Computation is any kind of analysis that involves both arithmetic and non-arithmetic

steps and applies, for starters, an algorithm, a well-defined framework.

1.3.1 Hard Computing and Soft Computing

Binary-based hard computation, crisp structures, numerical analysis, and crisp applica-

tions. Soft computation based on fuzzy logic, neural networks, and inferential statistics,

i.e. tolerating imprecision, uncertainty, partial truth, and estimation.

1.4 Stochastic Process

Stochastic alludes to a haphazardly decided process. In computation, stochastic pro-

grams work by utilizing probabilistic strategies to unravel issues, as in recreated strength-

ening, stochastic neural systems, stochastic optimization, hereditary calculations and

hereditary programming. An issue itself may be stochastic as well, as in arranging be-

neath instability.

1.5 Requirement of Nature Based Algorithms

Most traditional or classical algorithms are deterministic. For illustration, the simplex

method is deterministic in linear programming. Some deterministic optimization algo-

rithms use gradient information. This is called a gradient-based algorithm. For example,

the important Newton-Raphson algorithm is based on gradients because it practices the

values of functions and their derivatives and matches itself to smooth one-modal prob-

lems. However, if the lens function is disrupted, it will not function properly. In this

case, the gradient-free algorithm is preferred. Algorithms with or without gradients do

not use derivatives, only function values.

1.6 Group Leader Optimization

Group leader optimization is one of the most essential techniques in computational

techniques. This method is developed from the general idea of leaders in the social
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group and cooperative co-evolutionary algorithm. In this method, group members are

influenced by a group leader. The leader represents the nature of the group but becoming

the leader should have potential and abilities better than other members. The quality

of members of a group might lead to changes like a blight or enhance in new etiquette

and peculiarities under the affection of a leader. The formation of a group is based on

random selection not based on the similar nature of the member. Different groups are

created and each group has its group leader. In the GLOA method, every group strives to

attain global solutions following the affection of each group leader which are the nearest

members of the group to local or global minima. The fitness value of a leader is greatest

among the group after an iteration or some iteration fitness value of other members is

better than a leader than that member is the new leader for that group. Some part

of the algorithm is creating new members. Hence leader affects the other members of

the group and revolution occur at every iteration and group members come closer to

each other. From this way solution space will occur between a leader and members and

able to find a search area for optimum (Global or Local) solution quickly. After some

iteration, it may possible that there is no much difference between the fitness value of

leader and members so the transfer of such variable has done between groups randomly

to maintain the diversity of the group. This crossover helps a group to come out from

the local minima solution and examine for novel solution spaces.
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Chapter 2

Literature Review

Introduction to Algorithms and Nature-Inspired Optimization Algorithms[1]

In today’s world, optimization is very useful tool in many areas comprises of engi-

neering, industry process and commercial activities driven for economic purpose. Opti-

mization is relied on application i.e. what we want to optimize. It includes reduction of

energy utilization, fuel, weight and cost. There are many tools available which plays a

vital roal optimization. It may be based on artificial intelligence or genetic algorithm.

Main aim of optimization is to achieve desired output and performance with increased

efficiency. There is always some algorithm which runs in background for computational

method. By aid of input parameters defined for computation, algorithm processes and

yields in increased efficiency.

Teaching learning-based optimization algorithm implemented on multi-area

economic dispatch[2]

TLBO makes use of a population-based process that aims at a global solution. The

population comprises a swarm of students or student class. This method is bifurcated

within two sections, the first one is of student and the latter part is of the learning phase.

The teacher phase emphasis learning from the teacher and the latter makes use of intel-

lectual process among students.

Solution of Economic Load Dispatch Dierential Particle Swarm Optimiza-

tion[3]
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Swarm particle optimization is a population-based stochastic optimization technology

beautiful. In PSO, a potential solution called a particle, bypasses the problem Space fol-

lows the current optimal particle. Each particle monitors its coordinates in the assigned

problem range quoted among the greatest decision he should make. This value is called

pbest. Other “best ”values followed by the dredge particle optimizer are the best Values

obtained so far from each particle in neighboring particles. This is it cation called lbest.

at a particle uses the entire population being topology.

Evolutionary Programming Techniques implemented on Economic Load Dis-

patch[5]

It is a heuristic search algorithms derived from natural selection of the population and

evolutionary process. It typically provides a quick and viable solution. In actual values,

it requires the control parameters. In terms of actual values, the population is initialized.

There is a shift across all the solutions in the existing population. The next-generation

choice is also made between mutated and present solutions.
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2.1 Flowcharts of Different Optimizing Techniques

2.1.1 Teaching Learning Based Optimizing techniques

Figure 2.1: Teaching Learning Based Optimization
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2.1.2 Differential Particle Swarm Optimization

Figure 2.2: Differential Particle Swarm Optimization
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2.1.3 Evolutionary Programming technique

Figure 2.3: Evolutionary Programming Technique
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Chapter 3

Group Leader Optimization

This segment contains a unique optimization computation, called the Group Leader

Optimization Algorithm (GLOA), which was put forward by Daskin(2011)[5]. When

decreeing this calculation for the first time, several groups of people were made from

randomization. Each group seeks to determine a global solution that must be considered

as the closest leader’s fitness value to the near to global. In each group, the leader is

some whose fitness is best after repetition in their group, if other parts of the same

group consist superiority respect for the group, and at this point, the leader can lose his

position. A leader continues to strive to manage all other part’s collections so that the

modern part can be made from the old part and the pioneering collector. As the number

of cycles increases, each group of individuals approaches the leader. It is clear that after

a series of evaluations, the collected part can be very comparable to the precurso.

3.1 Mutation and Recombination Process

Create new members, group leaders, and random elements using old members. The

equation is:

NEW = R1 ∗ old + R2 ∗ leader + R3 ∗ ran

The values of R1, R2 and R3 determine the proportion of old (current) members, leaders,

and randomly when they generate a new population. If the new member has a greater

fitness score than the old member, substitute the old one with the new one, if not later

hold the old one. In this step, the executive concludes whether the new member has a

20



greater fitness score than the old member and substitutes the old member. Otherwise,

the old members will be held.

3.2 Crossover Process

This is a single channel crossover method, which means the most crucial part of this

algorithm because this method is useful for maintaining group diversity. Here, one can

transfer several variables from various groups and select them randomly. This manner

is similar to different differential progression vectors, but the main distinction is that

transfers occur between members who are in distinct groups. For this step, the most

essential thing is to choose the right transferal rate, because all populations can quickly

become similar to pick the wrong transfer rate. The conveyance speed is T times for

each group. Wherever, T is an arbitrary number belonging to 1 to 1/2 of the total

number of common variables (parameters) plus the variable T. Just individual parameter

is conveyed at a moment.

CR ≤ T ≤ (variables/2) + 1

3.3 Systematic Steps for GLOA

There are five sections in GLOA which are underneath.All the steps below are stated:

• Make (N) the total population in each group randomly within the maximum and

minimum range and tend to be their respective responsibilities. The population

increase is thus G * P, where G is the number of groups. Individual production is

very unintentional. Enter the number of unknown factors and their maximum and

minimum reach.

• Evaluate fitness value of all group members.

• Assign leader to each group, member with highest fitness value among the group

will be the leader.

• Produce new members using process of mutation and recombination by using old
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members.

NEW = R1 ∗ old + R2 ∗ leader + R3 ∗ ran (3.1)

ran is random number between 0 to 1. Here, R1, R2 and R3 are the rates determin-

ing the parts of old member, leader, and random values of group members while

generating the new population. Summation of values of R1, R2, R3 is 1. Proper

values of R1, R2, R3 is must require for accurate and optimum solution. Created

new member or other member from group have better fitness value than leader than

it will replace the leader.

• Now parameters are transferred in the crossover or variable process or members

from one group to another. The transferred member is chosen randomly by the

group. Here, the transmission speed is H times. One parameter is transferred in

each case.

1 ≤ CR ≤ (var/2) (3.2)

‘var’ is variable and its value is same as population.CR is random number between

0 to 1.

• Repeat with step 3 to step 5 until number of iteration or accuracy level achieved

then terminate the process or go to step 4 for continue process.

3.4 GLOA and ELD

This section defines new techniques for implementing the GLOA algorithm to solve ELD

challenges. GLOA is often practiced with different constraints in ELD problems. The

foremost purpose of the aforementioned framework is to minimize the cost function. Every

systematic step of the GLOA algorithm to determine the solution of ELD as shown below:
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Figure 3.1: GLOA for Economic Load Dispatch

23



Chapter 4

Formulation of ELD Problem

The conventional composition of ELD challenge is to diminish the fuel cost of individual

generator with consideration of power balance with respect to real power and demand

power and also subject to limits on generator output. Here, one of the complex types of

test system of ELD problem have been composited and solved by GLOA method.

4.1 Quadratic Cost Function and Different Constraints

for ELD

The main aim of economic dispatch is to reduce total cost of fuel (CF ) at power plant

with consideration of operating constraints of system as shown below:

CF = min[
n∑

i=1

= nCF (Ei)] = min(
n∑

i=1

Xi + YiEi + ZiP
2
i ) (4.1)

Ei is power generation unit i and CF (Ei) is generator cost function and explained as

quadratic polynomial.Xi, Yi, Zi are cost coefficient of ith generator and n is the number

of generators of power plant.

4.1.1 Real Power Balance

n∑
i=1

Ei − Ed = 0 (4.2)

Ed is power demand for lossless transmission consideration.
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4.1.2 Generation Capacity

Eminimum
i ≤ Ei ≤ Emaximum

i (4.3)

Here, Emaximum
i and Eminimum are the maximum and minimum power generation by

generator ith unit.

4.2 Power Balance

Once equality constraint is satisfied then power balance is easy to achieve. Summation

of total demand and total load should equal to total generation.

n∑
i=1

Ei = Ed (4.4)

4.3 Quadratic Cost Function

This objective function is the same as (4.1). Here, objective cost function CF is required

to be minimized to (4.2), (4.3). losses during transmission is ignored.El is zero.

4.4 Valve-Point Effect

CF = min[
i=1∑
n

CF (Ei)] = min

[ n∑
i=1

Xi+YiEi+ZiP
2
i +

∣∣∣∣ki∗sin{Ci∗(Emin
i −Ei)

}∣∣∣∣] (4.5)

ki and Ci are cost coefficient

4.5 Equality Constraint With Transmission Losses

n∑
i=1

Ei − Ed − Eloss = 0 (4.6)

PL =
n∑

i=1

n∑
j=1

EiBijEj +
n∑

i=1

B0iEi + B00 (4.7)
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4.6 Ramp Rate limit

Ei − Ei0 ≤ URLi (as generation rises)

Ei0 − Ei ≤ LRLl (as generation falls)

and max
(
Emin

i , Ei0 − LRLi

)
≤ min (Emax

i , Ei0 + URLi)

(4.8)

4.7 Prohibited Operating Zone

Due to faults in machines and components like boilers, feed pumps, steam valve operations

and bearing vibration, constraint such as prohibited operating zone (POZ) is taken.

Emin
a ≤ Ea ≤ El

a,1

Eu
a,j−1 ≤ Ea ≤ El

a,j

Eu
a,n ≤ Ea ≤ Emax

a

 ; j = 1, 2, . . . , n (4.9)

4.8 Calculation of Slack Generator

Ed −
n∑

i=1

Ei = En

Ed + Eloss −
n∑

i=1

Ei = En

(4.10)

Equation (4.9) can be redesign as below:

BNNP
2
N + En

(
2
∑n−1

i=1 BniEi +
∑n−1

i=1 B0n − 1
)

+
(
Ed +

∑n−1
i=1

∑n−1
j=1 EiBijEj +

∑n−1
i=1 B0iEi−∑n−1

i=1 Ei + B00

)
= 0

(4.11)
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Chapter 5

Numerical Results

5.1 GLOA Technique for ELD

GLOA has been employed to solve ELD challenges in the test cases and its execution

should correspond to certain distinct optimization techniques.

5.1.1 Test Case-1

Here, 40 generator units have taken with assumption of no transmission losses. Data

required for input is taken from [6] and same is added in Appendix. 10500 MW is

total demand. Here, the output result of EMA[6],QPSO [6] and IPSO [7] are compared

with GLOA. In Table 1, minimum fuel cost for 40 generator units is 121412.5354 $/hr.

obtained by the GLO algorithm, better than EMA,QPSO and IPSO. The minimum,

maximum and average fuel cost obtained from 50 trials are shown in table 2. From table

2, it is seen that GLOA is the fastest as well as it gives most optimum solution. The

convergence characteristic of GLOA is displayed in Figure 1. The net power delivered to

the system comes out to be 10500 MW. So, the level of the result accuracy is 100 percent

with no transmission losses.
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Table 5.1: Optimum power output and fuel cost for GLOA and other techniques com-
parison for 40-unit system

Unit Power Output
GLOA EMA[6] QPSO[6] IPSO[7]

P1 110.7989 110.7998 111.2000 110.8000
P2 110.7989 110.7998 111.7000 110.8000
P3 97.3995 97.3999 97.4000 97.400
P4 179.7333 179.7331 179.7300 179.7330
P5 87.79844 87.7999 90.1400 87.8000
P6 139.9998 140.00 140.00 140.00
P7 259.6014 259.5996 259.6000 259.6000
P8 284.5974 284.5996 284.8000 284.6000
P9 284.6008 284.5996 284.8400 284.6000
P10 130.0001 130.00 130.00 130.00
P11 94.00008 94.00 168.8000 94.0000
P12 94.00170 94.00 168.8000 94.0000
P13 214.7593 214.7598 214.7600 214.7600
P14 394.2783 394.2793 304.5300 394.2790
P15 394.2793 394.2793 394.2800 394.2790
P16 394.2764 394.2793 394.2800 394.2790
P17 489.2794 489.2793 489.2800 489.2790
P18 489.2794 489.2793 489.2800 489.2790
P19 511.2787 511.2793 511.2800 511.2790
P20 511.2784 511.2793 511.2800 511.2790
P21 523.2802 523.2793 523.2800 523.2790
P22 523.2797 523.2793 523.2800 523.2790
P23 523.2785 523.2793 523.2900 523.2790
P24 523.2797 523.2793 523.2800 523.2790
P25 523.2794 523.2793 523.2900 523.2790
P26 523.2806 523.2793 523.2800 523.2790
P27 10.00 10.00 10.0100 10.00
P28 10.00 10.00 10.0100 10.00
P29 10.0008 10.00 10.00 10.00
P30 87.8012 87.7999 88.4700 87.8000
P31 189.999 190.00 190.00 190.00
P32 189.9975 190.00 190.00 190.00
P33 189.9975 190.00 190.00 190.00
P34 164.8005 164.7998 164.9100 164.8000
P35 199.9990 200.00 165.3600 194.4000
P36 194.4057 194.3977 167.1900 199.999
P37 109.9998 110.0000 110.0000 110.0000
P38 110.0000 110.000 107.0100 110.0000
P39 110.0000 110.0000 110.0000 110.0000
P40 511.2802 511.2793 511.3600 511.2790
Fuel

Cost($/hr)
121412.5354 121412.5355 121448.2100 121412.5455
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Table 5.2: Average, Maximum, Minimum Cost Comparison for 40 Generator Units (50
trials)

Methods Generation Cost ($/hr.) Time/Iteration(s)
No. of Hits to

minimum
Solution

Maximum Minimum Average
GLOA 121414.2353 121412.5355 121412.7060 0.24 45
EMA[6] 121416.2031 121412.5355 121414.6617 0.29 21
QPSO[6] 121455.9510 121448.2100 121453.628 0.65 15

Figure 5.1: Convergence characteristic of GLOA for 40 generator units
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5.1.2 Test Case-2

In the Test System-2, Power demand is 2520 MW and 13 generator units have been

taken with transmission loss consideration. Require input data is taken from [10] and

shown in Appendix. The result obtained by GLOA for Test System-2 is in Table 5.3.

The maximum cost, minimum cost, average cost are in Table 5.4. The convergence

characteristic is shown in Figure 5.2. The obtained result has been compared with the

existing method such as SCA, ORCCRO, SDE.

Table 5.3: Optimum power output and fuel cost for GLOA and other techniques com-
parison for 13-unit system

Unit GLOA SCA [12] SDE [9] ORCCRO [8]
P1 628.3183 628.3179 628.32 628.32
P2 299.1994 299.1992 299.2 299.2
P3 297.4464 297.4468 299.2 299.2
P4 159.7325 159.7327 159.73 159.73
P5 159.7329 159.7327 159.73 159.73
P6 159.7328 159.7328 159.73 159.73
P7 159.733 159.7331 159.73 159.73
P8 159.7331 159.7325 159.73 159.73
P9 159.7326 159.7328 159.73 159.73
P10 77.3996 77.3995 77.4 77.4
P11 114.7996 114.7993 113.12 112.14
P12 92.3994 92.3997 92.4 92.4
P13 92.3995 92.4 92.4 92.4

Power Generation (MW) 2560.3591 2559.8 2560.43 2559.43
Transmission Loss (MW) 40.35 39.8 40.43 39.43

Fuel Cost ($/hr.) 24512.6065 24512.6085 24514.88 24513.91
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Table 5.4: Average, Maximum, Minimum Cost Comparison for 13 Generator Units (50
trials)

Methods Generation Cost ($/hr)
Time

/iteration (s)

No. of hits to

minimum

solution
Maximum Minimum Average

GLOA 24512.59 24512.61 24512.6 0.0355 48
SCA [12] 24512.61 24512.61 24512.61 0.0361 50

ORCCRO [8] 24518.56 24513.91 24515.72 0.0533 27
SDE [9] 24519.74 24514.88 24516.23 NA* 21

Figure 5.2: Convergence characteristic of GLOA for 13 generator units
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5.1.3 Test Case-3

In Test Case-3, the total number of generator units considered are 15 with transmission

loss consideration. The total power demand is 2630 MW. Prohibited operating zone and

ramp rate limits have been taken as a constraint. Appendix describes the cost coefficients

of the generators prohibited operating zones and B-coefficient matrix for transmission

loss calculations respectively. The Table 5.5 shows the result obtained by the proposed

technique GLOA. The Average, Minimum, Maximum values of generation cost obtained

by GLOA are in Table 5.6. A comparison of the obtained result has been done with

existing techniques such as CTPSO, PSO, GA. Convergence characteristic is shown in

the Figure 5.3.
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Table 5.5: Optimum power output and fuel cost for GLOA and other techniques com-
parison for 15-unit system.

Unit Power Output

GLOA GA[11] PSO[11] CTPSO[11]

P1 454.8210 415.3180 439.1162 455.0000

P2 379.6430 359.7206 407.9727 380.0000

P3 129.9661 104.4250 119.6324 130.0000

P4 129.9234 74.9853 129.9925 130.0000

P5 170.0000 380.2844 151.0681 170.0000

P6 459.9770 426.7902 459.9978 460.0000

P7 429.9997 341.3164 425.5601 430.0000

P8 72.1010 124.7867 98.5699 71.7430

P9 69.0948 133.1445 113.4936 58.9186

P10 149.3550 89.2567 101.1142 160.0000

P11 79.8642 60.0572 33.9116 80.0000

P12 25.0936 49.9998 79.9583 80.0000

P13 25.0936 38.7713 25.0042 25.0000

P14 15.0270 41.9425 41.4140 15.0000

P15 15.0554 22.6445 35.6140 15.0000

Total Power

(MW)
2659.921 2668.4000 2662.4000 2660.6615

Power Loss

(MW)
29.921 38.2782 32.4306 30.6615

Fuel

Cost ($/hr)
32699.6315 33113.0000 32858.0000 32704.0000
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Table 5.6: Comparison for 15 Generator Units (50 trials)

Methods Generation cost ($/hr.)
Time

(s)

No. of hits to

Best solutions

Maximum Minimum Average

GLOA 32699.6315 32699.6315 32699.6315 6.0 49

GA[11] NA 33113.0000 NA NA NA

PSO[11] NA 32858.0000 NA NA NA

CTPSO[11] NA 32704.0000 NA NA NA

Figure 5.3: Convergence characteristic of GLOA for 15 generator units

5.2 Discussion

5.2.1 Tuning Parameters

It is inevitable to tune parameters for getting the optimal output. For that suitable

values of R1, R2 and R3 are inherent. One should take all possible combination of

tuning parameter to identify optimized fuel. The compiled obtained result is shown in

Table 5.7.
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Table 5.7: Tuning Parameters of GLOA for Test System-1

R2 R3 R1
0.5 0.6 0.7 0.8 0.9 1.0

0.50 0.45 121412.7082 121412.7075 121412.7074 121412.7071 121412.7069 121412.7073
0.50 0.40 121412.7080 121412.7073 121412.7073 121412.7070 121412.7067 121412.7071
0.45 0.35 121412.7073 121412.7071 121412.7072 121412.7069 121412.7065 121412.7069
0.40 0.30 121412.7073 121412.7069 121412.7069 121412.7068 121412.7064 121412.7066
0.35 0.25 121412.7070 121412.7068 121412.7068 121412.7065 121412.7063 121412.7064
0.30 0.20 121412.7068 121412.7067 121412.7065 121412.7060 121412.7062 121412.7063
0.25 0.15 121412.7069 121412.7069 121412.7067 121412.7067 121412.7065 121412.7066
0.20 0.10 121412.7069 121412.7071 121412.7069 121412.7068 121412.7067 121412.7068
0.15 0.05 121412.7070 121412.7073 121412.7072 121412.7069 121412.7068 121412.7069
0.1 0.01 121412.7072 121412.7075 121412.7073 121412.7070 121412.7071 121412.7070

5.2.2 Solution Quality

Result obtained from implementation of GLOA for ELD problem on three different test

cases proves that GLOA shows best result in terms of fuel cost, number of hits to best

solution and simulation time.

5.2.3 Robustness

The quality of a certain heuristic algorithm can’t be predicted from a single run test.

Usually, their success is measured for several numbers of the running of the programs

of those algorithms. To get a beneficial result about the execution of the algorithm,

several runs with varying initialization of the size of the population should always be

made. An algorithm is believed to be stable if consistently performed overall tests. This

effectiveness is far superior to numerous distinct algorithms mentioned in the different

kinds of literature. Hence, the foregoing findings authenticate the intensified capacity of

GLOA to make high-quality computationally effective and robust solutions.
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Chapter 6

Conclusion

An efficient GLOA population-based algorithm is employed to tackle ELD problem. It

is clear that employed technique is flexible, efficient and comfortable in Global minima

and rarely gets trapped in local minima. In this method, no computationally, expensive

derivatives are significant so it is quite easy. The numerical results output shows that

GLOA is capable to find extraordinary ELD solution as compared to well-regarded op-

timizer. Obtained output numerical results ensure the excellent capability of GLOA in

convergence characteristics, solution quality and heftiness compared to other optimizers.

Hence, GLOA technique results revealed that it can tackle complex ELD problems.
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Chapter 7

Future Scope

• Implementation of GLOA on Economic load Dispatch for different test case,for

various number of generating units and various load demand.

• Some new techniques can also be used to solve ED and EELD for improvising

results.

• Extension of a system, which makes use of real world system incorporating renew-

able energy sources.
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Appendix A

Input Data

A.1 Input Data for Test System-1 (40 generator units)

Table A.1: Fuel Cost Coefficients and Operating Limits of The Generators for Test
System-1

Unit Pimin(MW ) Pimax(MW ) ai($) bi ($/MW) ci($/MW 2) ei($) fi(MW−1)

1 36 114 94.705 6.73 0.00690 100 0.084

2 36 114 94.705 6.73 0.00690 100 0.084

3 60 120 309.540 7.07 0.02028 100 0.084

4 80 190 369.030 8.18 0.00942 150 0.063

5 47 97 148.890 5.35 0.01140 120 0.077

6 68 140 222.330 8.05 0.01142 100 0.084

7 110 300 287.710 8.03 0.00357 200 0.042

8 135 300 391.980 6.99 0.00492 200 0.042

9 135 300 455.760 6.60 0.00573 200 0.042

10 130 300 722.820 12.90 0.00605 200 0.042

11 94 375 635.200 12.90 0.00515 200 0.042

12 94 375 654.690 12.80 0.00569 200 0.042
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Unit Pimin(MW ) Pimax(MW ) ai ($) bi ($/MW) ci($/MW 2) ei($) fi (MW−1)

13 125 500 913.400 12.50 0.00421 300 0.035

14 125 500 1760.400 8.84 0.00752 300 0.035

15 125 500 1728.300 9.15 0.00708 300 0.035

16 125 500 1728.300 9.15 0.00708 300 0.035

17 220 500 647.850 7.97 0.00313 300 0.035

18 220 500 649.690 7.95 0.00313 300 0.035

19 242 550 647.830 7.97 0.00313 300 0.035

20 242 550 647.810 7.97 0.00313 300 0.035

21 254 550 785.960 6.63 0.00298 300 0.035

22 254 550 785.960 6.63 0.00298 300 0.035

23 254 550 794.530 6.66 0.00284 300 0.035

24 254 550 794.530 6.66 0.00284 300 0.035

25 254 550 801.320 7.10 0.00277 300 0.035

26 254 550 801.320 7.10 0.00277 300 0.035

27 10 150 1055.100 3.33 0.52124 120 0.077

28 10 150 1055.100 3.33 0.52124 120 0.077

29 10 150 1055.100 3.33 0.52124 120 0.077

30 47 97 148.890 5.35 0.01140 120 0.077

31 60 190 222.920 6.43 0.00160 150 0.063

32 60 190 222.920 6.43 0.00160 150 0.063

33 60 190 222.920 6.43 0.00160 150 0.063

34 90 200 107.870 8.95 0.00010 200 0.042

35 90 200 116.580 8.62 0.00010 200 0.042

36 90 200 116.580 8.62 0.00010 200 0.042

37 25 110 307.450 5.88 0.01610 80 0.098

38 25 110 307.450 5.88 0.01610 80 0.098

39 25 110 307.450 5.88 0.01610 80 0.098

40 242 550 647.830 7.97 0.00313 300 0.035
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A.2 Input Data for Test System-2 (13 generator units)

Table A.2: Fuel Cost Coefficients and Operating Limits of The Generators for Test
System-2

Unit Pimin(MW ) Pimax(MW ) ai($) bi($/MW ) ci($/MW 2) ei($) fi

1 0 680 0.00028 8.10 550 300 0.035

2 0 360 0.00056 8.10 309 200 0.042

3 0 360 0.00056 8.10 307 150 0.042

4 60 180 0.00324 7.74 240 150 0.063

5 60 180 0.00324 7.74 240 150 0.063

6 60 180 0.00324 7.74 240 150 0.063

7 60 180 0.00324 7.74 240 150 0.063

8 60 180 0.00324 7.74 240 150 0.063

9 60 180 0.00324 7.74 240 150 0.063

10 40 120 0.00284 8.60 126 100 0.084

11 40 120 0.00284 8.60 126 100 0.084

12 55 120 0.00284 8.60 126 100 0.084

13 55 120 0.00284 8.60 126 100 0.084
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B-Matrix for Test Case-2
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A.3 Input Data for Test System-3 (15 generator units)

Table A.3: Fuel Cost Coefficients and Operating Limits of The Generators for Test
System-3

Unit ai ($)
bi

($/MW)

ci

($/MW 2)

Pimin

(MW )

Pimax

(MW )

URi

(MW/hr.)

LRi

(MW/hr.)

Pi0

(MW )

1 0.000299 10.1 671 150 455 80 120 400

2 0.000183 10.2 574 150 455 80 120 300

3 0.001126 8.8 374 20 130 130 130 105

4 0.001126 8.8 374 20 130 130 130 100

5 0.000205 10.4 461 150 470 80 120 90

6 0.000301 10.1 630 135 460 80 120 400

7 0.000364 9.8 548 135 465 80 120 350

8 0.000338 11.2 227 60 300 65 100 95

9 0.000807 11.2 173 25 162 60 100 105

10 0.001203 10.7 175 25 160 60 100 110

11 0.003586 10.2 186 20 80 80 80 60

12 0.005513 9.9 230 20 80 80 80 40

13 0.000371 13.1 225 25 85 80 80 30

14 0.001929 12.1 309 15 55 55 55 20

15 0.004447 12.4 323 15 55 55 55 20
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B-Matrix for Test Case-3
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Prohibited Operating Zone Data for Test Case-3
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