
PerformanceFlow: Hospital assets
monitoring and notification system

Submitted By

Zealous Macwan

18mcei04

DEPARTMENT OF COMPUTER & SCIENCE ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2020

PerformanceFlow: Hospital assets
monitoring and notification system

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Computer Science and Engineering

(Information and Network Security)

Submitted By

Zealous Macwan

(18mcei04)

Guided By

Prof. Parita Oza

DEPARTMENT OF COMPUTER & SCIENCE ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2020

Certificate

This is to certify that the major project entitled as ”PerformanceFlow:

Hospital assets monitoring and notification system” submitted by

Zealous Macwan (18mcei04), towards the fulfillment of the requirements

for the award of degree of Master of Technology in Computer Science and En-

gineering (Information and Network Security) of Nirma University, Ahmed-

abad, is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required

for being accepted for examination. The results embodied in this major

project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Prof. Parita Oza, Dr. Sharada Valiveti,

Guide and Assistant Professor, Associate Professor,

CSE Department, Coordinator M.Tech CSE(INS),

Institute of Technology, Institute of Technology,

Nirma University,Ahmedabad Nirma University,Ahmedabad

Dr. Madhuri Bhavsar, Dr. R N Patel,

Professor and Head, I/C Director,

CSE Department, Nirma University,Ahmedabad

Institute of Technology,

Nirma University,Ahmedabad

iii

Statement of Originality
—————————————————————————————————-

I, Zealous Macwan, 18mcei04, give undertaking that the Major Project

entitled ”PerformanceFlow: Hospital assets monitoring and noti-

fication system” submitted by me, towards the partial fulfillment of the

requirements for the degree of Master of Technology in Computer Science

& Engineering (Information and Network Security) of Institute of

Technology, Nirma University, Ahmedabad, contains no material that has

been awarded for any degree or diploma in any university or school in any

territory to the best of my knowledge. PerformanceFlow: Hospital as-

sets monitoring and notification system is a solution under development

at Philips Innovation Campus, Bangalore and I have carried out the

work under the guidance of Philips Architect. I give assurance that no at-

tempt of plagiarism has been made. It contains no material that is previously

published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published

work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Parita Oza

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude

to Prof. Parita Oza, Assistant Professor, Computer & Science Engineer-

ing Department, Institute of Technology, Nirma University, Ahmedabad for

her valuable guidance and continual encouragement throughout this work.

The appreciation and continual support she has imparted has been a great

motivation to me in reaching a higher goal. Her guidance has triggered and

nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Madhuri Bhavsar,

Hon’ble Head of Computer & Science Engineering Department, Institute of

Technology, Nirma University, Ahmedabad for her kind support and provid-

ing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr. R N Patel,

I/C Director, Institute of Technology, Nirma University, Ahmedabad for the

unmentionable motivation she has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Sci-

ence & Engineering Department, Nirma University, Ahmedabad for their

special attention and suggestions towards the project work.

- Zealous Macwan

18mcei04

v

Abstract

Performance Flow project is about developing solution to manage, moni-

tor, maintain and analyse assets of the Hospital. By developing this solution

it will help medical stack-holders to improve the overall management of as-

sets with useful insights from the assets and better healthcare satisfaction

to patients. Medical staff can easily find the required medical devices with-

out wasting much time on searching for the assets, which will also improve

their satisfaction on work. Support and Maintenance staff can monitor and

diagnose the IT infrastructure used for asset tracking and management. It

will have alerting and notification to report any abnormal performance of the

resources and related teams will be notified. As these assets sends valuable

information as per their capabilities, these information will be analysed so

that assets can be optimally utilized. Patients overall flow in the hospital

for required treatment can be monitored and can be improved by finding out

where the timing can be improvised.

vi

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Objective of Study . 2

1.3 Scope of Work . 3

2 Literature Survey 4

2.1 Docker . 4

2.2 Prometheus . 5

2.3 Grafana . 6

2.4 CAdvisor . 7

2.5 WMI Exporter . 7

vii

2.6 BlackBox Exporter . 8

2.7 Proprietary System . 9

3 Implementation 10

3.1 High Level Architecture . 10

3.2 Data flow between tools . 12

3.3 Spinning up Docker Containers 13

3.4 Setup Grafana source and Visualization Panel 15

3.5 Notification . 17

3.5.1 Setup Alerts . 18

3.5.2 Setup Notification channel 19

3.5.3 Setup Multiple Notification channel 20

3.5.4 Setup notification channel for rule 21

3.6 System Hardening . 22

3.7 Docker Swarm . 23

3.8 Configuration of Docker images 24

3.8.1 Configuration by passing $Env to container 24

3.8.2 Grafana configuration 25

3.8.3 Prometheus configuration 26

3.8.4 cAdvisor configuration 27

3.9 Build and Deploy Flow . 28

3.9.1 Normal Deployment flow 28

3.9.2 Build Script to auto build customized images 29

3.9.3 Push Images to private registry 30

3.9.4 Deployment of the images 31

3.9.5 Sample build script . 32

3.9.6 Sample deploy script 33

3.10 Notification integration to proprietary system 34

viii

4 Screenshots of PerformanceFlow 36

4.1 Sample dashboard of PerformanceFlow System resources . . . 36

4.2 Sample dashboard of PerformanceFlow System APIs 37

4.3 Container Monitoring . 38

4.4 Database Monitoring . 39

4.5 Windows Process Monitoring 39

4.6 API Monitoring . 40

4.7 Tags Monitoring . 41

4.8 Notifications . 42

4.8.1 Notification on Slack channel 42

4.8.2 Notification on MS Team 42

4.8.3 Notification by Email 43

5 Future Work and Conclusion 44

5.1 Future Work . 44

5.2 Conclusion . 44

References 45

ix

List of Figures

2.1 Docker Vs Virtual Machine Architecture 5

2.2 Grafana Visualization Panels 7

3.1 High Level Architecture of Monitoring and Alerting System . . 10

3.2 Grafana running as a container 14

3.3 Grafana Query Editor for Prometheus 15

3.4 Grafana Visualization Editor 16

3.5 System’s working flow with notifications 17

3.6 Grafana Alert creator . 18

3.7 Notification Channel . 19

3.8 List of Notification Channel 20

3.9 Rule Notification Channel . 21

3.10 Container Deployment . 28

3.11 Build Script to build all images 29

3.12 Push Images to private registry 30

3.13 Pull and Deploy Images . 31

3.14 Container Deployment . 34

4.1 Dashboard of PerformanceFlow System 36

4.2 Dashboard of API monitoring 37

4.3 Containers Monitoring Dashboard 38

x

4.4 Containers CPU Usage Graph Panel 38

4.5 Containers Memory Usage Graph Panel 38

4.6 Database Status . 39

4.7 Windows Process Status . 39

4.8 API endpoint Monitoring . 40

4.9 API Response time . 40

4.10 Tags Activity . 41

4.11 Tags per day . 41

4.12 Notification on Slack channel 42

4.13 Notification on MS Team . 42

4.14 Notification by Email . 43

xi

List of Tables

2.1 Comparison between Docker and Virtual Machine 5

xii

Chapter 1

Introduction

1.1 Problem Statement

In Healthcare facilities, patient volume is increasing day by day with

expectation of higher patient experience and satisfaction. To fulfill these

demands, hospital facilities needs to streamlined workflow to reduce number

of steps to complete the medical events. One of the key components for

efficient workflow is tracking and management of assets. When medical staff

are under higher workload, they might be wasting valuable time to search for

medical devices. So to reduce this time, asset tracking and management is

required. For these Hospitals are using different kind of RF-ID tags which can

be attached to assets and real time location of assets can be fetched and staff

can reduce the timing of searching for the assets. Maintenance and inventory

department can also track assets to get insights and act accordingly. Similar

way, staff and patient can have these kind of tags which will send real time

location of the respected person. These tags will provide useful information

for patient monitoring. As these tags are tagged with particular patients,

all the upcoming and historical medical events of the patient can be tracked

1

and it can be useful to improve the workflow like where the patient currently

is, where he required to go next for medical event like scanning or to meet

the doctor etc. These will also give insights like how many patients are

waiting for the same kind of medical treatment as currently other patient is

undergoing the treatment. In situation like medical triage when the number

of incoming patients are more than capacity of the medical center or ER,

efficient workflow is required to meet the demands.

1.2 Objective of Study

Objective of this project is to develop the system which will be used as

monitoring and notification of the assets, IT infrastructure,process and ser-

vices supporting the working of assets, tags. Also to develop notification and

alerting system to raise alerts and notification when any threshold rules for

values are violated. These system will have dashboards to monitor and hav-

ing features to view real-time as well as historical data based on capabilities.

Second is to analyse the data and find useful insights out of the collected

data to improve efficiency of workflow, utilization of resources, managements

of assets, monitoring of patients, staff management etc.

• Develop monitoring system having visualization of real time and his-

torical data.

• Develop Notification and Alerting system with capabilities to integrate

with existing platforms.

• Deployment package of the system for easy installation

2

1.3 Scope of Work

As this solution is for monitoring,alerting,notification,analysing the re-

sources only, this solution is not intended to be used for clinical decision

making. This solution is not used for diagnostic purpose and has no connec-

tion to operation room or surgical use.

This solution is not for automatic resolving of the issues for which alerts are

raised, respected entity to whom the notification is sent or having responsi-

bility of the work need to act to resolve issues.

3

Chapter 2

Literature Survey

To implement required system using available tools and technology, it’s

working and understanding is required which has been carried out. Feasi-

bility of the tools and technology to implement the system also considered.

Below are the tools and technology which has been surveyed and used for

the development.

2.1 Docker

Docker[1] is a tool which allows developer to easily create, deploy and run

applications by using containers[2]. Docker uses OS level virtualization to

wrap application in container. Containers are packages of application, li-

braries and its dependencies. By wrapping up all required resources in single

package it allows developer to ship it out easily. Containers are isolated from

other containers but have their own software, libraries and configuration files

and can communicate with each other using well defined channel.

4

Figure 2.1: Docker Vs Virtual Machine Architecture

Docker VM

Process Isolation OS level HW level
OS Shares Separate per VM

Boot Time few seconds few minutes
Storage Space in MBs in GBs

Memory Allocated as required Relatively High
PreBuilt Availability Easily Available Difficult

Creation Time few seconds Relatively longer
Resource Usage Low High

Table 2.1: Comparison between Docker and Virtual Machine

2.2 Prometheus

Prometheus[4] is a software used for event monitoring. It stores event

information in time series database providing higher dimension for events. It

5

is built on HTTP pull model means it will itself pull metrics over http. For

adding source from where it will pull values is added as job in configuration

file where it requires target, configuration and time interval at which it need

to be scrapped.

One of the alternative of Prometheus is Graphite but it’s not full enriched

as Prometheus. Prometheus having client libraries, own alert manager,many

exporters and flexible query language [5].

Sample yml file :

scrape_configs:

- job_name: ’prometheus’

static_configs:

- targets: [’localhost:9090’]

- job_name: ’cadvisor’

static_configs:

- targets: [’localhost:3000’]

2.3 Grafana

Grafana[6] is powerful visualization tool, which is used for creating dash-

boards for visualizing data. It provides many type of visualization like Graph,

Singlestat, Table, Text etc. It also provide many popular data-source from

where the data can be read.

One of the other available tool for visualization is Kibana[7], which

is primarily used for analyzing log messages generated by sources. Kibana

does not support alerting feature which is one of the requirement for current

system.

6

Figure 2.2: Grafana Visualization Panels

2.4 CAdvisor

Container Advisor[8] is used to monitor the resource usage and perfor-

mance characteristics of running containers. CAdvisor daemon collects, ag-

gregates, processes, and exports information about running containers. It

keeps resource parameter, usage, network statics of each containers isolated

from others. It also exports the metrics over HTTP to be scrapped.

2.5 WMI Exporter

WMI exporter[10] uses Windows OS wmi services to get insights of the

system like memory, storage usage,process and services status. WMI ex-

porter collects these details and exposes as metrics to http port which can

7

be scrapped by prometheus. In the current requirement this will be used to

monitor windows systems and it’s resources supporting our development.

Sample wmi command with parameter :

.\wmi_exporter.exe --collectors.enabled "process"

--collector.process.processes-where "Name LIKE ’skype%’"

2.6 BlackBox Exporter

Blackbox exporter[9] used to do blackbox probing of endpoints over HTTP,

HTTPS, ICMP etc. It will also export metrics over HTTP to be scraped.

We can configure the different prober in configuration files. It can also be

configured for different parameters like certificate verification, timeout, IPv4

and IPv6 address.

Sample yml file :

modules:

http_2xx:

prober: http

timeout: 60s

http:

method: GET

preferred_ip_protocol: ip4

tls_config:

insecure_skip_verify: true

8

2.7 Proprietary System

One of the requirement of the project is that, notification from the mon-

itoring and notification system should be able to integrate with existing pro-

prietary system, which is already in use for internal secure communication

and notification, because it does not depend on external tools it is more re-

liable for internal communication. To achieve this integration,the working,

flow and requirements of the system has been explored and integration with

the monitoring and notification system has been carried out. Which includes

understanding of the properties passing to the portal and rule management

and email notification functionality.

9

Chapter 3

Implementation

3.1 High Level Architecture

Figure 3.1: High Level Architecture of Monitoring and Alerting System

As shown Figure 4.1 is high level architecture of the system. Here assets

are hospital IT infrastructure, supporting applications and services, tags and

other medical devices. As these assets needs to be monitored, their status

and value needs to be exported. Monitoring and Notification system then

10

will scrape event data from the sources and will store,process and display

to the users by mean of dashboards. Which can be accessible over HTTP

on browser. Dashboards are collection of different visualization panels like

graphs, gauges and status-map. System will also evaluate collected values of

the assets against threshold limit as per rule and will send notification if rules

are violated. For any notification to be sent it will send it as per configuration

to the respected channel like email, slack or ms team. As shown in figure

sources, which generates metrics and the monitoring system are isolated and

they are communicating using HTTP channel. Notification part of the system

sends notification with required values to the support team, which will take

action to analyse and resolve the issues for which alerts are generated.

11

3.2 Data flow between tools

Exporters: It collects data from the assets and generates metrics which

can be scrape by Prometheus. In current system, Blackbox exporter, cAdvi-

sor are the exporters.

Monitor : Prometheus is a monitoring system, having time series database

to store collected data. It also provides query language to slice and dice

collected data for better analyse and visualization.

Visualizer : Grafana provides a powerful visualization of the data using

graphs, gauges, text, status-map etc. Grafana can get data from multiple

popular data sources like MySQL, MS SQL Server, Prometheus etc. For the

requirement of the having dashboards to visualize our assets values, Grafana

also provides feature to separate collection panels into dashboards.

Notifier : Grafana also provides a feature to create alerts and notifications,

which is used to fulfill our requirement of notification.

Data flow starts from the exporters, Exporters are the one which collects

values from assets and makes it available on http endpoint in form of metrics.

Next, These endpoints needs to be configured in Prometheus which is called

targets. On frequent time interval Prometheus then pulls metrics from these

targets and stores in time-series database. Now we have data available in

time-series format in Prometheus which will be our data source for Grafana.

Other than Prometheus, SQL database is also used as data source to visu-

alize database. Grafana needs to be configured to get data from these data

sources. These values are then passed to Grafana panels, which is accessible

through browser. For alert and notification rules needs to be set on Graph

panel, for that individual rules on the panel also need to be created along

with conditions. When these conditions fails it will generate alert and then

notification will be sent to specified channel.

12

3.3 Spinning up Docker Containers

To easily build and run our system at different installation sites, Docker is

used to create separate containers for each component of the system. Docker

hub registry also provides some prebuilt application images which can pulled

and run as a container. For our required tools, prebuilt images are available

on docker registry.

Docker containers can only be created using docker images. Here docker

image is the file, which contains code of the application to be executed in a

container.

This images can be stored in docker registry or private registry so that it

can be accessed whenever required.

To understand the working of docker, sample container creation is dis-

cussed below:

Install Docker software, which is available for all major platforms

Pull the docker image of the application for example, Grafana

docker pull grafana/grafana:1.0

(pulls grafana image having tag 1.0)

docker images

(lists all images available locally)

Spin up container of grafana image

docker run -name grafana -p 81:3000 grafana/grafana:1.0

(-name grafana sets container name to grafana)

(-p 81:3000 maps local port to container’s port)

(-grafana/grafana:1.0 image to be run on container)

13

On successful creation of the container, container status can be seen using

docker ps

(lists all containers running)

Once the container is up and running, its nothing but your application

is running and can be accessed as it is configured. For Grafana, it can be

accessed on specified port 81 here using browser.

Same way for prometheus, cAdvisor and Blackbox containers can be cre-

ated by pulling their images.

Figure 3.2: Grafana running as a container

14

3.4 Setup Grafana source and Visualization

Panel

Figure 3.3: Grafana Query Editor for Prometheus

As shown in figure 3.3, First step to setup visualization panel is to setup data

source and query for the panel. List of configured data source is available in

drop down menu to choose from. Next is to write query to display data on

panels. For Prometheus data source, PromQL query is required. For SQL

database, SQL query is required.

Sample PromQL query

probe_http_status_code{instance="https://www.google.com/"}

(Returns http response status code)

15

Figure 3.4: Grafana Visualization Editor

Figure 3.4 shows the visualization options for Graph panel. Options and

visualization features are different for different panels.

16

3.5 Notification

Figure 3.5: System’s working flow with notifications

Grafana provides many popular service integration to be used as notification

channel. As shown in figure Email, Slack and Microsoft team are popular

communication channels. This notification channel requires Web-hook URL

and some configuration like intended recipients or group, which can be con-

figured in Grafana notification channel options.

One of the requirement of the system was, it should be able to integrate

to existing proprietary system for notification. As Grafana directly can not

be integrated with such systems, intermediate agent was required. For which

separate agent or say remote notifier is built which fetches alerts from no-

tification systems and converts alerts into specific format. It will also saves

converted alerts into log file. Now proprietary system can read this log file

and gets the alerts, which is being used to generate notification to the portal

and sends mail notification to intended recipients.

17

3.5.1 Setup Alerts

Figure 3.6: Grafana Alert creator

Figure 3.5 shows the alert function for graph panel. In conditions section,

multiple conditions can be applied on the data available with panel. When

conditions are not satisfied rule will be marked as violated.

18

3.5.2 Setup Notification channel

Figure 3.7: Notification Channel

Notification channels can be added by accessing Alerting- Notification Chan-

nels tab. As shown in figure, email channel is selected. For which recipients

email ids needs to be added and sender email id and SMTP server configu-

ration needs to be setup in Grafana configuration file.

Similar way for different channels different fields needs to be filled. For

slack and MS Team Web-hook URL is required. Other common options are

reminder timing and image inclusion. Image include option allows to include

current snapshot of the panel to be sent to notification along with values.

Reminder timing sends notification at specified time interval.

19

3.5.3 Setup Multiple Notification channel

Figure 3.8: List of Notification Channel

Grafana also allows to add multiple notification channels, Which can be of

same type or different type. Most of the notification channels are of internet

based. To use them, Grafana instance must be able to communicate with

them via internet. Grafana also having option for custom notification channel

for which custom service needs to available to take notification requests.

20

3.5.4 Setup notification channel for rule

Figure 3.9: Rule Notification Channel

Once notification channels are added as explained in previous section, They

available to use for alerts in alerts tab of the graph panel. As shown in figure

slack and email channels are added to current alert. So whenever rule is

violated, Grafana will try to send notification to these channels.

21

3.6 System Hardening

System hardening is about securing the system from known vulnerabilities

and possible attacks. For securing our notification and monitoring notifica-

tion, enough measures has been taken and required restriction been applied

on the system. Few of them are discussed here.

As we are using docker containers for our system, we have applied restric-

tion on access of these containers. There is restriction applied on root access

to container, only from docker console root access can be gained. This will

prevent non root user from accidentally modifying the files and also from

attackers.

• As we are using docker containers for our system, we have applied

restriction on access of these containers. There is restriction applied

on root access to container, only from docker console root access can

be gained. This will prevent non root user from accidentally modifying

the files and also from attackers.

• CPU and Memory constraints has been applied at docker engine level

to control over utilization of resources in case of any attacks.

• At application level, Grafana has been configured to have different

accounts for admin and non admin users. Non admin user only can

view dashboards and can not modify or change admin settings.

22

3.7 Docker Swarm

It is a container orchestration tool, which allows containers to be deployed

across multiple hosts. It provides high availability of applications as number

of containers can be scaled. For this project docker swarm is used to de-

ploy stack of our services. Docker swarm also uses the docker-compose.yml

file. This file defines services, network and volumes, which allows multiple

containers to be spin up in single go.

Docker stack deployment command

docker stack deploy -c docker-compose.yml mystack

(passing docker-compose.yml file)

(mystack Providing name to stack)

docker stack ls

(lists available stacks)

23

3.8 Configuration of Docker images

As discussed in previous section about setting up Prometheus jobs and tar-

gets, creation of dashboards in Grafana, setting up rules notification chan-

nels, Setting up targets for Blackbox etc will become tedious task for multiple

installation of the system at different sites.

So to have easy and customized installation of the system, some of the

configuration which can be pre-set are discussed here. Also for all images

some of the customization like port number on which service can accessible,

is also discussed.

3.8.1 Configuration by passing $Env to container

Sample Docker Compose file

docker-compose.yml

Version: ‘3.4’

services:

monitoring:

image: grafana/grafana:v1.0

environment:

- SERVER_PORT=${PORT_NUMBER}

.....

24

3.8.2 Grafana configuration

Sample Docker Compose file

docker-compose.yml

Version: ‘3.4’

services:

monitoring:

image: grafana/grafana:v1.0

environment:

-SERVER_PORT=${PORT_NUMBER}

-PATH = ../provisioning_sample/

.....

As discussed previously, creating visualization panels for assets includes steps

like selecting data source, writing queries, customizing visualization, writing

alert rules and setting up notification channels.

Same steps needs to be carried out for all assets to be monitor. Also these

dashboard panels are created manually after the installation of Grafana.

As system will be installed at multiple installation sites, creating dash-

boards manually is not feasible. Grafana provides option to export these

dashboards in JSON file format. Which can be imported after installation.

This will eliminate importing of dashboards after installation.

Still we wanted our system installation to be as easy as possible, we have

provisioned these dashboards inside image itself. This provisioning setting

is shown in above sample compose file. Where we are using these provi-

sioned dashboards and passing to Grafana at the time of deployment of the

containers.

25

3.8.3 Prometheus configuration

Sample Prometheus.yml file

prometheus.yml

global:

scrape_interval: 5m

evaluation_interval: 5m

scrape_timeout: 2m

scrape-configs:

- job_name: monitor

static_configs:

- targets: [‘localhost:8080’]

.....

As prometheus needs prometheus.yml file with job details and targets to be

scraped. Manual updation of file was required before. To eliminate this, we

have prepared sample yml file with all jobs and their targets. This sample

file is included in image itself which can be replaced with original yml after

installation to have new jobs and targets.

26

3.8.4 cAdvisor configuration

Sample docker-compose.yml file

docker-compose.yml

Version: ‘3.4’

services:

cAdvisor:

image: cAdvisor:v1.0

deploy:

mode: global

command:

- -v=4

- -docker_only

- -port=${CONTAINER_MONITOR_PORT}

.....

In cAdvisor configuration, we are passing custom port number, on which

cAdvisor will put metrics about performance of docker containers. As we are

using swarm mode, we want only one service of cAdvisor to be running on

node, for which deploy mode is set to global. Other mode is ”replicated”,

which creates multiple replica of the service.

27

3.9 Build and Deploy Flow

3.9.1 Normal Deployment flow

Figure 3.10: Container Deployment

Pre built application images are available on docker hub. For our system

required images are cAdvisor, Blackbox Exporter, Prometheus and Grafana.

Docker images are built using dockerfile. Dockerfile is a file which contains

all commands to be called to assemble an image.

Step 1. Pull images from Docker Hub

Step 2. Create and Run containers from downloaded images

28

3.9.2 Build Script to auto build customized images

Figure 3.11: Build Script to build all images

Pre built images are configured with default options. But we were required

to change these default configuration, so we have created dockerfiles for all

four images. These dockerfile will pull images from dockerhub and then adds

custom configuration as per our requirements and then assembles customized

image locally.

To automate this image build, we have created a built script which will

use dockerfiles and creates customized images. Other logic like tagging image

with build version number, pushing it to private registry is also been included

in the script. Sample build script is shown in next section.

29

3.9.3 Push Images to private registry

Figure 3.12: Push Images to private registry

To avoid creation of customized images every time, build script will push

images to our private registry. Private registry is more secure and reliable

for such customized images because it can only be accessed by organization

and we do not have to depend on external docker hub. Private registry also

stores image with different version numbers or tag id.

To push images to private registry, its authentication is also handled by

this build script along with image path and specific format of image name.

30

3.9.4 Deployment of the images

Figure 3.13: Pull and Deploy Images

Once we have images in our private images, it works same as docker hub, we

can pull and run images from there. As discussed earlier we have to carry

out steps like

• Environment variables to be passed to containers like port number for

the services,tag id of images, registry URL etc

• Pull images of specific tag from private registry

• Create Stack of services and run containers.

31

3.9.5 Sample build script

Sample build.bat file

build.bat

set TEST=true

set PUSH=false

set VERSION=1.0.0

set URL= ...

set BUILDNUMBER=

set LOGIN_SUCCESS=false

set BUILD_SUCCESS=false

set PUSH_SUCESS=false

Generate build number according to timezone

Build images with tags

Login to Registry

Push images to registry

.....

32

3.9.6 Sample deploy script

Sample deploy.bat file

deploy.bat

set PORT=1000

set VERSION=1.0.0

...

Pull images from registry

Pass docker-compose file

Deploy docker stack of services

.....

33

3.10 Notification integration to proprietary

system

Figure 3.14: Container Deployment

Proprietary system is built and widely used by organization as internal com-

munication channel. It does not depend on any other external system. It was

one of the requirement that our system can communicate with it. Grafana

can not directly communicate with such system as working of such system

be always different.

To provide this integration, we have built one application which we are

referring as remote agent. Remote agent is placed between PerformanceFlow

system and proprietary system. This agent work is to get alerts generated by

Grafana and to convert them into form that can be picked up by proprietary

system.

Remote agent is configurable to time interval at which it fetches the alerts

and writes into log file.

Below are some of the features developed in remote agent.

• Task scheduler to fetch and generate log files at time interval

• Log file backup based on file size, log file names with timestamps

34

• Reading environment variable from host system

• Customized log file path to be read by proprietary agent

• Arguments passing for target address,port and authorization key

35

Chapter 4

Screenshots of

PerformanceFlow

4.1 Sample dashboard of PerformanceFlow Sys-

tem resources

Figure 4.1: Dashboard of PerformanceFlow System

36

4.2 Sample dashboard of PerformanceFlow Sys-

tem APIs

Figure 4.2: Dashboard of API monitoring

37

4.3 Container Monitoring

Figure 4.3: Containers Monitoring Dashboard

Figure 4.4: Containers CPU Usage Graph Panel

Figure 4.5: Containers Memory Usage Graph Panel

38

4.4 Database Monitoring

Figure 4.6: Database Status

4.5 Windows Process Monitoring

Figure 4.7: Windows Process Status

39

4.6 API Monitoring

Figure 4.8: API endpoint Monitoring

Figure 4.9: API Response time

40

4.7 Tags Monitoring

Figure 4.10: Tags Activity

Figure 4.11: Tags per day

41

4.8 Notifications

4.8.1 Notification on Slack channel

Figure 4.12: Notification on Slack channel

4.8.2 Notification on MS Team

Figure 4.13: Notification on MS Team

42

4.8.3 Notification by Email

Figure 4.14: Notification by Email

43

Chapter 5

Future Work and Conclusion

5.1 Future Work

In current PerformanceFlow system, all requirements has been imple-

mented. Future work can be feature enhancement in current system. Some

of them are like single sign on, daily report generation and more assets mon-

itoring and analysis panels.

5.2 Conclusion

The current system as per requirements, is able to monitor all required

resources and able to display status in dashboard with time-range feature to

see historical data. It is also capable of alert and notification to available

notification channels. Integration of current system with proprietary system

using remote agent has been completed. Also, packaging and installation

scripts of the system has been developed, so it is ready to be used.

44

References

[1] Docker, Overview

https://docs.docker.com/engine/docker-overview/

[2] Docker, Resources : Container

https://www.docker.com/resources/what-container

[3] Docker Hub for Images : Container

https://hub.docker.com/search?image_filter=official&type=

image

[4] Prometheus Overview

https://prometheus.io/docs/introduction/overview

[5] Prometheus Comparison

https://prometheus.io/docs/introduction/comparison/

[6] Grafana Docs

https://grafana.com/docs/grafana/latest/

[7] Kibana

https://www.elastic.co/guide/index.html

[8] Google cAdvisor

https://github.com/google/cadvisor

45

https://docs.docker.com/engine/docker-overview/
https://www.docker.com/resources/what-container
https://hub.docker.com/search?image_filter=official&type=image
https://hub.docker.com/search?image_filter=official&type=image
https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/introduction/comparison/
https://grafana.com/docs/grafana/latest/
https://www.elastic.co/guide/index.html
https://github.com/google/cadvisor

[9] BlackBox exporter

https://github.com/prometheus/blackbox_exporter

[10] WMI Exporter

https://github.com/martinlindhe/wmi_exporter

46

https://github.com/prometheus/blackbox_exporter
https://github.com/martinlindhe/wmi_exporter

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objective of Study
	Scope of Work

	Literature Survey
	Docker
	Prometheus
	Grafana
	CAdvisor
	WMI Exporter
	BlackBox Exporter
	Proprietary System

	Implementation
	High Level Architecture
	Data flow between tools
	Spinning up Docker Containers
	Setup Grafana source and Visualization Panel
	Notification
	Setup Alerts
	Setup Notification channel
	Setup Multiple Notification channel
	Setup notification channel for rule

	System Hardening
	Docker Swarm
	Configuration of Docker images
	Configuration by passing $Env to container
	Grafana configuration
	Prometheus configuration
	cAdvisor configuration

	Build and Deploy Flow
	Normal Deployment flow
	Build Script to auto build customized images
	Push Images to private registry
	Deployment of the images
	Sample build script
	Sample deploy script

	Notification integration to proprietary system

	Screenshots of PerformanceFlow
	Sample dashboard of PerformanceFlow System resources
	Sample dashboard of PerformanceFlow System APIs
	Container Monitoring
	Database Monitoring
	Windows Process Monitoring
	API Monitoring
	Tags Monitoring
	Notifications
	Notification on Slack channel
	Notification on MS Team
	Notification by Email

	Future Work and Conclusion
	Future Work
	Conclusion

	References

