"TO FORMULATE AND CHARACTERIZE NANOEMULGEL CONTAINING ANTI-ACNE AGENT (DAPSONE)"

A Thesis Submitted to

NIRMA UNIVERSITY

in Partial Fulfillment for the Award of the Degree of

MASTER OF PHARMACY

IN

PHARMACEUTICS

ΒY

PARTH R. PATEL (18MPH109), B. PHARM.

Under the guidance of

Dr. JIGAR N. SHAH Assistant Professor, Department of Pharmaceutics

Department of Pharmaceutics Institute of Pharmacy Nirma University Ahmedabad-382481 Gujarat, India.

May 2020

Scanned with CamScanner

CERTIFICATE

This is to certify that the dissertation work entitled "TO FORMULATE AND CHARACTERIZE NANOEMULGEL CONTAINING ANTI-ACNE AGENT (DAPSONE)" submitted by Mr. Parth R. Patel with Regn. No. 18MPH109 in partial fulfillment for the award of Master of Pharmacy in "Name of a Department" is a bonafide research work carried out by the candidate at the Department of Pharmaceutics, Institute of Pharmacy, Nirma University under my/our guidance. This work is original and has not been submitted in part or full for any other degree or diploma to this or any other university or institution.

Guide

Dr. Jigar N. Shah Ph.D., M. Pharm., MBA Assistant professor, Department of Pharmaceutics, Institute of Pharmacy, Nirma University.

Prof. Tejal Mehta M. Pharm., Ph.D., Professor & Head, Department of Pharmaceutics, Institute of Pharmacy, Nirma University

Prof. Manjunath Ghate M. Pharm., Ph.D. Director Institute of Pharmacy, Nirma University

20th, Month, 2020.

Mr. Jaywant Patil Senior Manager, R&D Formulation, ALKEM Laboratories. Ltd, Navi Mumbai

CERTIFICATE

This is to certify that the dissertation entitled: "Formulation development and Evaluation of Anti-acene Gel." is the bonafide research work done by <u>Parth Patel</u> during the session 2019-20 in partial fulfilment of the requirement for the degree of Master of Pharmacy in Pharmaceutics under joint supervision by myself in Formulation, Research & Development Laboratories at ALKEM Laboratories. Ltd, Navi Mumbai.

I certify that he has carried out his research work independently with proper care. I hereby recommend that, this dissertation be accepted in partial fulfilment of requirement for the degree of Master of Pharmacy in Pharmaceutics. I am very pleased to forward this thesis for evaluation.

(Mr. Jaywant Patil)

Date: 30/03/2019

CERTIFICATE OF ORIGINALITY OF WORK

This is to undertake that the dissertation work entitled "TO FORMULATE AND CHARACTERIZE NANOEMULGEL CONTAINING ANTI-ACNE AGENT (DAPSONE)" Submitted by Mr. Parth R. Patel (18MPH109) in partial fulfillment for the award of Master of Pharmacy in "PHARMACEUTICS DEPARTMENT" is a bonafide research work carried out by me at the "Jigar N. Shah", Institute of Pharmacy, Nirma University. I am aware about the rules and regulations of Plagiarism policy of Nirma University, Ahmedabad. According to that, this work is original and not reported anywhere as per best of my Knowledge.

Mr. Parth R. Patel (18MPH109) Department of Pharmaceutics, Institute of Pharmacy, Nirma University

Guide

Dr. Jigar N. Shah M. Pharm., Ph.D., MBA, Assistant Professor, Department of Pharmaceutics, Institute of Pharmacy, Nirma University

20th, Month, 2020.

DECLARATION

I hereby declare that the dissertation entitled "TO FORMULATE AND CHARACTERIZE NANOEMULGEL CONTAINING ANTI-ACNE AGENT (DAPSONE)"", is based on the original work carried out by me under the guidance of Dr. Jigar N. Shah, Assistant Professor under the Department of Pharmaceutics, Institute of Pharmacy, Nirma University. I also affirm that this work is original and has not been submitted in part or full for any other degree or diploma to this or any other university or institution.

NY ..

Mr. Parth R. Patel (18MPH109) Department of Pharmaceutics Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Highway, Ahmedabad-382481, Gujarat, India

20th, Month, 2020.

ACKNOWLEDGEMENTS

This work is the result of prudent group efforts, intellect and experience of all those who have contributed their knowledge found beyond the covers of this dissertation. They have supported and encouraged me in all my efforts for successfully completing my project. A contribution value will forever be indebted and thus I express my gratitude to the people who have been instrumental in the successful completion of this project. It is my pleasure to thank everyone for those who have in any way have contributed to the thesis and made it possible for me to complete it.

It is my great pleasure to express deep sense of gratitude and offer my most sincere and humble thanks to my dissertation guide **Dr. Jigar Shah**. Without his efforts, constant assistance and backing this project work would not be so fruitful in the way it is. Thank you, sir! I am very fortunate to be a student of Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat and am thankful to our **HoD Dr. Tejal Mehta** and all the faculty members **Dr. Shital Butani, Dr. Mayur Patel, Dr. Dhaivat Parikh, Dr. Mohit Shah, Dr. Vidhi Shah and Ms. Anushree Raval** for their keen interest and valuable support. I also thankful to our Director **Dr. Manjunath Ghate**.

I am very grateful to **My Father Mr. Rasikbhai K. Patel & My Mother Mrs. Hansaben R. Patel** for their love and faith in me that "I can do" added huge courage to my spirit.

In the mean course of time, I have collaborated with a very veteran personality, **Vimal Patel** for whom I have due respect and I hold a warmest thanks.

I will always be thankful to the GOD for giving me the strength and wisdom to carry out the project work successfully. Last but not the least I would like to thanks my dear Parents for all their love, care affection and constant support in all terms.

I would be failing in my duties if I do not thank my beloved **friends Aaditya**, **Dhruv**, **Mayur**, **Raj**, **Vaibhav**, **Mitali**, **Kajol**, **Riddhi**, **Dharmika**, **Nidhi**, **Anusikta**, **Srusti**, **Priya** and **last but not least Yogita** for their constant support in every endeavor of mine and provided me with necessary stimulus for keeping the driving force integrated for successful completion of this project. **Thank** You, **friends**!!

I also wish to acknowledge our lab assistant, **Shaileshbhai**, **Mukeshbhai**, **and Drustiben** for providing all the materials required in my work.

Once again, I would like to thank all those mentioned here and those who I have unknowingly failed to mention in making this project a worthy endeavour.

Parth R. Patel

Table of Content

List of Figur	ev
List of Table	evi
List of Abbr	eviation viii
ABSTRACT	ſix
1. Introducti	on1
1.1 Intr	roduction to Acne
1.1.1	Introduction
1.1.2	Epidemiology2
1.1.3	Pathophysiology
1.1.4	Goal of Therapy5
1.1.5	Classification of Acne Severity
1.1.6	Marketed Formulations for Acne Treatment
1.2 Intr	roduction to Nanoemulgel10
1.2.1	Nanotechnology - Introduction
1.2.2	Introduction of Emulsion
1.2.3	Introduction to Microemulsion OR Nanoemulsion:
1.2.4	Method of Preparation – Nanoemulsion14
1.2.5	Nanoemulgel18
1.2.6	Marketed Formulations – Emulgel
2. Aim, Ra	ationale & Objective Error! Bookmark not defined.21
Aim	
Rationale	behind use of Dapsone
Rationale	to formulate Nanoemulgel
Objective	

3. Liter	ature Review23
3.1	Literature Review on Dapsone – A drug used for Treatment of Acne24
3.2	Literature Review on Nanoemulsion in Treatment of Acne
3.3	Literature Review on Nanoemulgel
4. Dr	ug & Excipients Details
4.1	Drug Related Information
4.2	Excipients Related Information
4.2	2.1 Details of Triacetin
4.2	2.2 Labrasol
4.2	2.3 Transcutol
4.2	2.4 Details of Tween 80
4.2	2.5 Carbopol 934
4.3	Plan of Work
5. Ma	aterials & Methods
5.1	List of Materials
5.2	List of Equipment44
5.3	Evaluation Preformulation Parameters45
5.3	8.1 Organoleptic Properties
5.3	3.2 Solubility Study
5.3	3.3 Melting Point
5.3	UV Spectrum Analysis45
5.3	8.5 FT-IR
5.3	8.6 DSC
5.4	Formulation and Evaluation of Nanoemulsion47
5.4	Screening of Oil, Surfactant and Cosurfactant
5.4	Physical Appearance

	5.4.3	Physical Stability
	5.4.4	Droplet Size & Polydispersity Index
	5.5.1	Drug Content
	5.5.2	pH Determination
	5.5.3	Rheological Measurement
	5.5.4	Physical Stability Study
	5.5.5	Antibacterial Activity Study
	5.5.6	In-vitro Diffusion Study49
6.	Results	
6	5.1 Prefor	mulation Study
	6.1.1	Organoleptic Properties
	6.1.2	Melting Point Determination
	6.1.3	UV-VIS Spectrum Study
	6.1.3	FT-IR
	6.1.3 6.1.4	FT-IR
6	6.1.3 6.1.4 5.2 For	FT-IR 53 DSC 54 mulation and Evaluation of Nanoemulsion 55
6	6.1.3 6.1.4 5.2 For 6.2.1	FT-IR 53 DSC 54 mulation and Evaluation of Nanoemulsion 55 Screening of Oil, Surfactant and Co-surfactant 55
e	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 	FT-IR 53 DSC 54 mulation and Evaluation of Nanoemulsion 55 Screening of Oil, Surfactant and Co-surfactant 55 Batch Details 57
e	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 	FT-IR 53 DSC 54 mulation and Evaluation of Nanoemulsion 55 Screening of Oil, Surfactant and Co-surfactant 55 Batch Details 57 Particle size and PDI measurement of Batches 62
6	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 6.2.4 	FT-IR53DSC54mulation and Evaluation of Nanoemulsion55Screening of Oil, Surfactant and Co-surfactant55Batch Details57Particle size and PDI measurement of Batches62pH Analsysis63
6	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 	FT-IR.53DSC.54mulation and Evaluation of Nanoemulsion55Screening of Oil, Surfactant and Co-surfactant55Batch Details57Particle size and PDI measurement of Batches62pH Analsysis63Physical Appearance of Nanoemulsion63
6	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 5.3 For 	FT-IR53DSC54mulation and Evaluation of Nanoemulsion55Screening of Oil, Surfactant and Co-surfactant55Batch Details57Particle size and PDI measurement of Batches62pH Analsysis63Physical Appearance of Nanoemulsion63mulation and Evaluation of Nanoemulgel64
6	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 5.3 For 6.3.1 	FT-IR53DSC54mulation and Evaluation of Nanoemulsion55Screening of Oil, Surfactant and Co-surfactant55Batch Details57Particle size and PDI measurement of Batches62pH Analsysis63Physical Appearance of Nanoemulsion63mulation and Evaluation of Nanoemulgel64Batch Details64
6	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 5.3 For 6.3.1 6.3.2 	FT-IR53DSC54mulation and Evaluation of Nanoemulsion55Screening of Oil, Surfactant and Co-surfactant55Batch Details57Particle size and PDI measurement of Batches62pH Analsysis63Physical Appearance of Nanoemulsion63mulation and Evaluation of Nanoemulgel64Batch Details64pH Analysis65
6	 6.1.3 6.1.4 5.2 For 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 5.3 For 6.3.1 6.3.2 6.3.4 	FT-IR53DSC54mulation and Evaluation of Nanoemulsion55Screening of Oil, Surfactant and Co-surfactant55Batch Details57Particle size and PDI measurement of Batches62pH Analsysis63Physical Appearance of Nanoemulsion63mulation and Evaluation of Nanoemulgel64Batch Details64pH Analysis65Particle size Analysis65

	6.3.6	Physical Appearance	66
7.	Conclus	ion	67
Ref	erences		69

List of Figure

Figure 1Appearance of Acne	2
Figure 2 Representation of Acne epidemiology in Developed and developing contries	2
Figure 3 Types of different Acne lesion	4
Figure 4 Different types of Nano based systems	10
Figure 5 Demonstration of Nanocomposite that contains RNAs	11
Figure 6 Process of systhesis nanocomposite by green chemistry route	12
Figure 7 Graphical presentation of dispersed phase of o/w Nanoemulsion	13
Figure 8 Graphical representation of high energy methods like high pressure homogen	nization,
microfluidizer and ultrasonicator	15
Figure 9 Nanoemulsion generation by spontaneous emulsification	16
Figure 10 Formation of Nanoemulsion by phase transition temperature	17
Figure 11 Method of preparation of Nanoemulsion by D phase emulsification	18
Figure 12 Figure illustrate the penetration of active pharmaceutical ingredients from l	ipid
nanoparticles	19
Figure 13 Method of preparation of Nanoemulgel	19
Figure 14 Standard curve of dapsone in Phosphate buffer pH 5.5	52
Figure 15 Standard curve of dapsone in Methanol	53
Figure 16 IR graph of Dapsone	53
Figure 17 DSC thermogram of Dapsone	54
Figure 18 Graphical representation of solubility study	56
Figure 19 Physical appearance of nanoemulsion	63
Figure 20 Physical appearance of Nanoemulgel	66

List of Table

Table 1 Sevearity based classification system of Acne	6
Table 2 Currently available molecules in market in suitable dosage form	6
Table 3 List of marketed formulation of nanoemulgel	20
Table 4 Information of Dapsone	
Table 5 Pharmacodynamic information of Dapsone (48)	34
Table 6 Drug interaction of Dapsone gel 7.5%	35
Table 7 Physicochemical properties of Dapsone (48)	35
Table 8 Information regarding Triacetin	
Table 9 Information regarding labrasol	37
Table 10 Information regarding Transcutol	
Table 11 Information regarding Tween 80	
Table 12 Information regarding Carbopol 934	40
Table 13 List of materials	43
Table 14 List of equipments used	44
Table 15 Organoletic properties of Dapsone	51
Table 16 Absorption table for Phosphate buffer pH 5.5	51
Table 17 Absorption table for Methanol	52
Table 18 Specification for Dapsone IR Study	53
Table 19 Various types of rotation of Dapsone	53
Table 20 List of oil, surfactant and co-surfactant for solubility study	55
Table 21 Batch Details for Selection of Surfactant and Co-surfactant	57
Table 22 Batch details for Triacetin and Capryol 90 ratio study	59
Table 23 Batch details for triacetin and Transcutol ratio study	59
Table 24 Batch details for drug loading studies	60
Table 25 Propable formulation for Nanoemulgel system	62
Table 26 List of Particle size analysis and PDI	62
Table 27 Table of pH	63
Table 28 Batch details for preparation of Nanoemulgel	64
Table 29 ph Analysis of Nanoemulgel	65

Table 30 Particle size analysis table for nanoemulgel	65
Table 31 Viscosity meaasurment data	65

List of Abbreviation

Sr. No	Abbreviation	Name
1.	NE	Nanoemulsion
2.	NEG	Nanoemulgel
3.	NSAID	Non steroidal anti-inflammatory agent
4.	ppm	Parts per million
5.	nm	Nanometer
6.	R	Registered trademark
7.	0C	Degree celcious
8.	PBS	Phosphate buffer saline
9.	PDI	Poludispervity index
10.	CoS	Cosurfactant
11.	UV	Ultraviolet

"TO FORMULATE AND CHARACTERIZE NANOEMULGEL CONTAINING ANTI-ACNE AGENT (DAPSONE)"

ABSTRACT

Acne is a very common inflammatory disorder mostly occurred in teenagers. Main reasons behind inflammation are overproduction of sebum, hormonal changes, bacteria infection, etc. Topical products are the first choice of healthcare practitioners to treat the acne because of some advantages like easy to apply, local action, fewer side effects, etc. Dapsone is the sulfone based antibiotic and has an antibacterial activity with minimum side effects. Currently, two different strengths of Dapsone 5% and 7.5% gel are available in the market. Dapsone has a log P value near to 1; it is less lipophilic so facing difficulties during penetration. Preparation of Nanoemulgel is a convincing concept to improve the penetrability of Dapsone. Nanoemulgel is a combination of Nano emulsion and gel. In which drug is incorporated in the Nano emulsion by preparing o/w emulsion, while gel phase mostly provides proper consistency for the easy application on the face. There are some advantages for preparing Nanoemulgel like increase the drug penetration because of oil droplets acts as lipidic carriers and can incorporate a large amount of drug compared to other nano systems. The main objective of this thesis is to formulate dosage form that has good penetration and better efficacy in the treatment of acne. Spontaneous emulsification method was used to prepare Nano emulsion. While triacetin used as oil phase, labrasol as surfactant and two different co-surfactant transcutol & Tween 80 was used in formulation development while Carbopol 934 was used as a gelling agent. The formulation was evaluated in viscosity, drug content, in-vitro release and ex-vivo release profile

1. Introduction

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

1.1 Introduction to Acne

1.1.1 Introduction:

Acne is also known as Acne vulgaris (AV). It is one of the most common skin diseases during adulthood with a prevalence ratio of almost 90% starting at the age of 12 years. Patients with such a young age like 8 years may have Acne and this condition would persist till adulthood about 45 years of age. Acne is generally present with psychological comorbidities like low self-esteem, anxiety and depression; specifically, when it happened during adolescent. (1)

*Figure 1*Appearance of Acne (2)

1.1.2 Epidemiology: (3)

- Mostly acne appears into 64% population in 20s and 43% population during 30s.
- Heritability is also major reason behind acne with around 80% prevalence in first degree relatives. Furthermore, it not only occurs earlier but more severely in these patients.
- Around 20% of young people will experience moderate to severe acne.
- In USA, people spend more than 3 billion dollars per year behind the treatment of acne.

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

Chepter 1

1.1.3 Pathophysiology:

The pathophysiology of Acne is multidimensional and was rooted in Inflammatory processes, Propionibacterium acnes, skin keratinization and excess sebum production. More specifically in adolescent patients, acne development should result of endocrine changes during puberty period, increased sebum production and accession of androgenic hormones. Most common reason behind AV is overproduction of oils from the sebaceous gland, those are mostly found on face and upper back. Secondly, any alteration in follicular development process such as hyperkeratinisation will contribute in Acne development. Then gram positive bacteria like P. Acnes can inhibit sebaceous follicles and the skin; it releases some enzymes like lipases, proteases should be responsible for the acne related inflammation and play a critical part in creation of likewise inflammatory mediators. These all inflammatory mediators combinedly cause plugging on epidermis and thus produce inflammatory lesions like papules, pustules, nodules, macule, patch, vesicle, bulla, cyst and wheals. (5,6)

Different Skin Lesions OR Symptoms are, (7)

- 1. Macule: It is a flat, not raised and coloured lesions with diameter of less than 2 cm.
- 2. **Patch:** A macule with larger diameter; generally, more than 2 cm.
- 3. **Papule:** It is a small solid palpable lesion with less than 1 cm of diameter.
- 4. Nodule: Papule with more than 1 cm in diameter and thus easily palpable.
- 5. **Vesicle:** It is a small fluid filled lesion and translucent with diameter of less than 1 cm.
- 6. Pustules: Vesicles with leucocytes.
- 7. Bulla: A fluid filled and raised lesion with more than 1 cm in diameter.
- 8. **Cyst:** It is a soft, raised, encapsulated lesion which contain liquid or semisolid content.
- 9. Wheal: A raised erythematous papule because of oedema.
- 10. **Comedone:** They are the skin-coloured, small bumps (papules) frequently found on the forehead and chin of those with acne. A single lesion is a comedo.
 - a. <u>Open comedone</u> are blackheads; black because of surface pigment (melanin), rather than dirt.
 - b. <u>Closed comedone</u> are whiteheads; the follicle is completely blocked.

- c. <u>Microcomedone</u> are so small that they are not visible to the naked eye.
- d. <u>Macrocomedone</u> are facial closed comedones that are larger than 2–3 mm in diameter.
- e. <u>A giant comedo</u> is a type of cyst in which there is a clear blackhead-like opening in the skin.

Figure 3 Types of different Acne lesion(8,9)

Other than these, endocrine abnormalities during pregnancy or polycystic ovarian syndrome during reproductive age also causes acne. Mostly, polycystic ovarian syndrome is characterizing by hyperandrogenism that increase the sebum production and thus producing the acne. Those patients have acne lesions on not only on their face but also on neck, chest and upper back. (10)

Chepter 1

1.1.4 Goal of Therapy:

Regardless of the age, goal for the treatments are;

- 1. To resolve and target the pathological condition of Acne
- 2. Decrease in the inflammatory lesions

European dermatological forum (EDF) mentioned in their guideline that 10% reduction in number of lesions should be considered as successful therapy, but ultimately patients' perspective on clinical success of therapy varies. (11) At last expected that patient's quality of life is improve.

1.1.5 Classification of Acne Severity:

There is not any standard method available for determination of the acne severity. Generally, acne is manifest based on present numbers of comedone either close or open, or both. It is seen that microcomedone serve as a precursor to comedone, specifically when follicle would start inhibited by excess of sebum produced, keratinized cells and bacteria combinedly. On accumulation of these mixture in follicle, a comedone will form and it is known as closed comedo or Whitehead. If further build up on follicular duct happens, it will expose to the air and oxidize to become black; it is known as open comedo or blackhead.

Inflammatory lesions would not only painful but it could lead to a permanent scarring. Thus, it is important to identify the appropriate treatment base on types and density of inflammatory lesions.

Normally acne's severity should be judge on mild, moderate and severe stages. Guidelines suggest the use of these stages based on either types of inflammatory lesions or its quantity or both. Two different studies give note to use this grading system but none of them will provide general consensus. (11)

Generally, an acne is noninflammatory and comedone based; still patient can perceive large number of comedone and inflammatory lesions during moderate to severe cases. Thus, it is important for doctors to classify the acne and choose the best possible method for treatment. Most severe type of acne is Conglobate acne as per European Dermatology Forum (EDF); that is characterized by group of inflammatory nodules and papules, comedones, etc. Also, conglobate acne primarily found on upper limbs, trunk and in lesser extend on face. (12)

Mostly acne at the adolescents and adult age is classified in four groups:

- 1. Comedonal acne
- 2. Mild-moderate papulopustular acne
- 3. Severe papulopustular acne/moderate nodular acne
- 4. Severe nodular acne/conglobate acne

Guideline			
General Classification	Global Alliance	European Dermatology Forum	American Association of Pediatrics
Mild	Comedonal or Mixed and papular / Pustular	Comedonal or Mild to moderate papulopustular	Comedonal or Inflamatory / mixed lesions
Moderate	Mixed and papular / pustular or Nodular	Mild to moderate papulopustular	Comedonal or Inflamatory / mixed lesions
Severe	Nodular or Conglobate	Severe papulopustular/ moderate nodular or Severe nodular / conglobate	Inflammatory / mixed and/or nodular lesions

Table 1 Sevearity based classification system of Acne

1.1.6 Marketed Formulations for Acne Treatment: (2)

Table 2 Currently available molecules in market in suitable dosage form

Drugs	Available Formulation	Dose	Common Adverse Effect

٦

Г

Torical Datinaida					
I opical Retinoids					
Adapalene	Cream, Gel, Lotion	Once daily	Dryness, Erythema, Photosensitivity, Pruritis, Stinging		
Tazarotene	Cream, Foam, Gel	Once daily			
Tretionin	Cream, Gel, Micronized gel	Once daily			
	Topica	l Antibiotics			
Clindamycin	Foam, Gel, Lotion, Pledget, Solution	Twice daily	Burning, Dryness, Erythema, Oiliness		
Erythromycin	Gel, Pad, Solution	Twice daily			
	Topical	Combination			
Adapalene / BPO	Gel	Once daily	Burning, Dryness, Erythema, Oiliness, Pruitus		
Clindamycin / Tretinoin	Gel	Once daily			
Clindamycin / BPO	Gel	Once daily			
Erythromycin / BPO	Gel	Twice daily			
Oral Antibiotics					

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

Doxycycline	Capsule, tablet	Once or twice daily	GI upset, esophagitis, Photosensitivity, Tooth staining
Erythromycin	Capsule, tablet	twice daily	GI upset, hepatotoxicity
Minocycline	Tablet	1mg/kg/day for 12 weeks	Autoimmune disorder, Dizziness, fatigue, headache
Tetracycline	Capsule	200-250mg twice daily	GI upset, tooth staining
Trimethoprime / Sulphamethoxazole	Tablet	800/160mg twice daily	Anemia, Hypersensitivity, rash

Hormonal Therapy

Combined	variable	Estrogen	Breakthrough bleeding,
contraceptives		lowest dose possible; Progestin variable once daily	breast tenderness, weight gain
Spironolactone	Tablet	20-100mg daily	Breast tenderness, hyperkalemia, hypotension, menstrual irregularities

Other

Azelaic acid	Cream	Twice daily	Hypopigmentation, Pruritus, Stinging
Dapsone	Gel	Twice daily or once daily	Erythema

Oral isotretinoin	Capsule	0.5-1	Blood dyscrasia, hair,
		mg/kg/day	skin and mucous
		in two	membrane dryness,
		divided	hepatotoxicity
		doses	

1.2 Introduction to Nanoemulgel

1.2.1 Nanotechnology - Introduction:

Nanomedicine is a branch of pharmaceutical sciences that uses the science of nanotechnology for prevention and cure of different diseases made by using special lipids and equipments, such as nanoparticles like Liposome, Niosomes, Nanoemulsion, Metallic nanoparticles, etc and nanorobots; for various applications like diagnosis, drug delivery, sensory, etc. Nanoparticles are defined as a particle have size between 1 to 100 nm. Large size particles used in convectional dosage possesses some major problems including poor bioavailability, poor solubility, less efficacy, probable adverse reaction, etc. (13)

Figure 4 Different types of Nano based systems (14)

Nanoparticles possesses a special structural, chemical, mechanical, magnetic, biological and electrical properties. One of the reasons behind success of nanoparticles is its capability of delivering the drug by encapsulating it in lipidic carrier to a specific target tissues with pre specified rate (Controlled or Sustained release). (15) Major limitations of convectional system such as drugs having very low solubility produce some delivery issues on oral administration, less diffusion capacity through outer membrane, large quantity of IV intake required, unwanted

Chepter 1

side effects, etc. are overcome by applying nanotechnological approaches in different dosage forms. (13)

Initially nanocomposite is used as carriers for anticancer drugs and vaccines and then it gives significantly enhanced bioavailability and better toxicodynamic of drugs. This would be improving the in-vivo delivery of many drugs that previously possesses delivery problems. Furthermore, modification in nanocomposite could also improve the delivery of drug through blood brain barrier and thus target the brain tumours. For example, nanocomposite of Doxorubicin with polysorbate 80 and modified with polybutylcyanoacrylate shows better penetration through blood brain barrier compare to the convectional dosage form. In addition to this, nanocomposite can also play an important role in DNA delivery of vectors because they can efficiently penetrate into tissues and due to their nanosized and lipidic nature they can easily uptake by cells. Nanocomposite also used as potential carrier for different drugs like anti-hypertensive, hormonal therapy, etc. (15)

Nanocomposite not only change the drug's physicochemical properties but also changed the pharmacokinetic of pharmaceutically active agents. For example, secretion of insulin from pancreases would increases by using spray drying based aggregates of trans-retinoic acid nanoparticles, that is coated with CaCO₃. These aggregates will re-disperse in water and stimulate the insulin secretion from islets.

Figure 5 Demonstration of Nanocomposite that contains RNAs (16)

Selection of ideal nano drug delivery system is based on biophysical and biochemical properties of the active pharmaceutical ingredient selected for the treatment. Apart from all these benefits, nanocomposite also shows some toxicity effect that cannot be ignored. To overcome the toxicity issue now-a-days nanocomposite made up with the combination of

Chepter 1

natural products. Recently green chemistry route of nanocomposite synthesis widely used by scientist because of its ability to minimize the hazardous constituents during biosynthetic process. (13)

Figure 6 Process of systhesis nanocomposite by green chemistry route (17)

1.2.2 Introduction of Emulsion:

Basically, emulsions are defined as the mixture of two immiscible phases in that dispersed phase is uniformly dispersed in continuous phase like liquid-liquid, solid-liquid, liquid-gas, etc. In convectional system this term only used for the liquid-liquid dispersion. United states Pharmacopeia defines emulsions as, "emulsions are two-phase systems in which one liquid is dispersed throughout another liquid in the form of small droplets." Emulsions are thermodynamically unstable system because of large difference in interfacial tension between two liquids. This can be overcome by adding surfactant and cosurfactant. Main function of using surfactant and cosurfactant is to reduce the interfacial tension between two liquids and make a stable emulsion. Normally two phases are known as Continuous phase and Dispersed phase. In that dispersed phase mostly present in less amount compare to the continuous phase.

Mostly emulsions are of two types: first is Oil in water (o/w) that are more prevalent and second is Water in oil (w/o). In addition to these, double emulsions are also available like water in oil in water (w/o/w). (18)

1.2.3 Introduction to Microemulsion OR Nanoemulsion:

Microemulsions are isotropic and thermodynamically stable system made up of oil, surfactant and water. The term "Microemulsion" was first coined by Schulman in 1959. (19) Although many scientists found its nomenclature confusing. (20) The main hallmark behind the microemulsion is thermodynamically stable but does not have any compulsion about particle size. However mostly droplet size is below 100 nm. (18)

In past, not much known classification of emulsion for delineate the size of dispersed phase, mostly below 1 mm, with unique nomenclature such as miniemulsion, ultrafine emulsion and submicron emulsion. Currently, the term Nanoemulsion have been used in three ways: first in replacement of term Microemulsion but smaller in size, second is more precise incarnation of the system such as miniemulsion having size less than 1 mm and third usage is in terms of nanotechnology, has a particle size around 100 nm. Here the prefix micro in microemulsion term giving wrong connotation of micron size particle range but actually the particles are around 100 nm in size. Term microemulsion generally known as thermodynamically stable system; so, when Nanoemulsion is use in substitute of microemulsion, it too will be considered as thermodynamically stable. (21)

Figure 7 Graphical presentation of dispersed phase of o/w Nanoemulsion (22)

The US government's institute called National Nanotechnology Initiative defined the criteria for the nanotechnology as, "The understanding and control of matter at dimensions of roughly 1-100 nm." With respect to the nanotechnology, Nanoemulsion must have particle size below 100 nm. Diameter would either be particle's radius or its diameter. However small change in the size of particles does not cause significant change in emulsion property.

Nanoemulsion should be transparent or translucent, in contrast to the opaque or milky white appearance of convectional emulsions. One of the reasons behind transparent or translucent appearance of Nanoemulsion is blockage of transition of optical wavelength of visible light from such a small size particle precisely of 100 nm in range. Quantity of dispersed phase also affect the optical property of emulsion.

Some problems associated with emulsion like creaming and sedimentation are not seen in the Nanoemulsion. The most basic reason behind not occurring of sedimentation is the energy generated by Brownian motion of the droplets is fair enough to counter the gravitational force. Secondly, creaming is due to particle size and difference in the densities of continuous and dispersed phase. Though it might be possible that optical property in that there is not any specific cut-off at 100 nm; responsible for creaming did not seen in Nanoemulsion.

The Nanoemulsion should defined as, "Heterogeneous system composed of one immiscible liquid dispersed as droplets within another liquid, where the average droplet diameter is below 100 nm."

1.2.4 Method of Preparation – Nanoemulsion:

Nanoemulsion should be prepared by mainly two methods: High energy method and Low energy method. These two methods are differing by energy used in preparation of emulsion. In high energy method, different mechanical devices like high shear homogenizer (HSH), high pressure homogenizer (HPH), microfluidizer and probe sonicator are used to generate vast disruptive forces. Due to the ease of production high energy methods are usually used in preparation of Nanoemulsion. Now-a-days, use of low energy methods should increase in formulating temperature sensitive drugs.

Chepter 1

A. High Energy Method:

High energy methods used various mechanical devices to generate large amount of disruptive force to produce Nanoemulsion. They consume large amount of energy so they are costly but showing good industrial scalability. The main principles in using high energy methods for preparation of Nanoemulsion are milling, high frequency sound wave (>20 kHz), high pressure displacement pump (500 - 50000 psi), etc. Amongst them high pressure valve homogenizer is widely used in food and pharmaceutical industries. In this instrument particle size would be decreases by applying various disruptive forces like turbulence, cavitation and shear. Increase in homogenization pressure will produce reduced particle size. Similarly, microfluidizer works on the same principle; only difference between two instruments is flow path of particles. One more instrument widely used is Ultrasonicator, this uses high energy sound waves to reduce the particle size of Nanoemulsion by increasing the sonication time and wave intensity. Generally high energy methods should be used with any type of oils but specifically used for the oils having high viscosity and high molecular weight because they are difficult emulsified. One of the benefits of this system is that it required less amount of surfactant. While using this method for formulating heat sensitive drugs could be difficult because of generation of heat during manufacturing process. (23)

Figure 8 Graphical representation of high energy methods like high pressure homogenization, microfluidizer and ultrasonicator (23)

B. Low energy method:

Nanoemulsion is prepared by using either internal chemical energy of the system or chemical potential of components called low energy method. Chemical energy released during

emulsification is responsible for the emulsification in low energy methods. Release of the energy is due to the spontaneous change in curvature of surfactant molecules from positive to negative (w/o) or from negative to positive (o/w). Normally low energy method includes stirring of emulsion at slower rate for long period of time; that will result in low energy consumption. Principally low energy method should be classified as Isothermal and thermal methods. For emulsification of temperature sensitive bioactive compounds generally Isothermal method is used like spontaneous emulsification, phase inversion composition, D phase emulsification and microemulsion dilution. On the other side thermal method mostly applicable in solid lipid containing nanoparticles where heating is requiring for maintaining liquid phase. (24)

i. Spontaneous Emulsification:

This is the most simplest method of emulsification. In this method rapid mixing is required for emulsification method. This process starts as soon as organic phase came in contact with water phase. This fast migration will produce an immense turbulence at the surface of both the phases and that leads to increasing in oil-water interfacial area. Here fine droplets of oils are generated spontaneously. Irrespective of surfactant, solvent shall play an important part in this process. Spontaneous emulsification in absence of surfactant called Ouzo effect. In this type of emulsification method order of mixing does not show any significant effect on emulsion formation. (25)

Figure 9 Nanoemulsion generation by spontaneous emulsification (25)

ii. Phase Inversion Composition (PIC):

It is an type of spontaneous emulsification method. This method used to prepare Nanoemulsion at room temperature. In this method water phase is slowly adding in drop wise manner into the oil phase on magnetic stirrer at room temperature. Thus, initially w/o emulsion will form which will covert into o/w emulsion on increase in volume of water. Various factors like interfacial tension, surfactant structure, bulk viscosity and its concentration, etc affect the emulsification method. In this method, phase inversion occurring on increase in the volume of water phase so it is also knowing as Catastrophic inversion.

iii. Phase Transition Temperature (PIT):

Temperature is the key factor in preparation of Nanoemulsion by PIT method. In this method surfactant, oil and water were continuously stirred and heated in specific manner until phase inversion ice bath and finally o/w Nanoemulsion will form. Phase transition temperature is normally 20-65 ^oC higher than its storage temperature when Nanoemulsion was o/w type and phase transition temperature was 10-40 ^oC higher than its storage temperature near PIT so to produce stability cosurfactant is added in the system. Generally, non-ionic surfactant will show temperature dependent changes in molecular geography and thus it will suitable for this emulsification method. Sometimes inorganic salts also have been used for adjustment of PIT. This method will produce high emulsification capcity and low polydispersity index compare to PIC method. (26)

Figure 10 Formation of Nanoemulsion by phase transition temperature (26)

Chepter 1

iv. Microemulsion Dilution:

It is the simplest type of emulsification method and also called self-emulsification method because emulsification occurs upon dilution with water at specific temperature. Mostly o/w type of emulsion is directly prepared by adding large amount of water in oil and surfactant mixer. Large amount of water would reduce the surfactant concentration and thus produce thermodynamically stable emulsion. Scaled up is easy in this type of emulsification method.

v. **D** – Phase Emulsification (DPE):

Sagitani, Hattori, Nabeta and Nagai in 1983 are pioneer in preparation of emulsion by this method. This method needs one special ingredient called alkyl polyols with oil, surfactant and water to form o/w Nanoemulsion. In contrast to other method this method requires no strict adherence to HLB, low surfactant concentration or its mixing and less energy to form a Nanoemulsion. (27)

Figure 11 Method of preparation of Nanoemulsion by D phase emulsification (27)

1.2.5 Nanoemulgel:

Nanoemulgel is basically a combination of Nanoemulsion and gel in a single dosage form. Emulgel is commonly used in the topical preparation. Nanoemulgel is as a dosage form more patient compliant than traditional emulsion system. Moreover, this system widely uses for delivering the drugs which have low lipophilicity and high dose. Due to the presence of drug into oil globules, penetration of BCS class III and due to the lipidic nature of the drug carrier (oil phase) solubility and penetration of BCS class IV drugs increases. Simple reason behind increasing penetration of drug is that oil phase due to its lipidic nature it fluidizes the lipid layer of skin for the short period of time and drug will transport into the skins. (28)

Figure 12 Figure illustrate the penetration of active pharmaceutical ingredients from lipid nanoparticles (28)

Emulgels have certain eye touching properties like thixotropic, easily spreadable, greaseless, easily removable, emollient, nonstaining, water soluble, transparent, pleasant appearance, etc. Nanoemulgel is prepared by adding preformulated Nanoemulsion into the mixer of gel and water. (29)

Figure 13 Method of preparation of Nanoemulgel (29)

1.2.6 Marketed Formulations – Emulgel:

Table 3 List of marketed formulation of nanoemulgel

Sr. No.	Name	Use
1.	Voltaren Emulgel	Topical analgesic
2.	Diclomax Emulgel	Tendons, ligaments
3.	Gaja Emulgel	Vaginal dryness, dehydration, redness
Aim, Objective and Rationale

2. Aim, Objective and Rationale

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

Aim: To formulate and characterize of Nanoemulgel containing anti-acne agent (Dapsone).

Rationale behind use of Dapsone:

- Dapsone is a sulfone based antibiotic and proven efficient in treatment of Acne.
- It is proven that once daily use of Dapsone based gel efficient to treat acne lesions and produce less side effect compare to other anti-acne agents.
- Dapsone could be used to treat medium to severe cases of Acne lesions.
- Dapsone has log P value 0.97 that is slightly lipophilic and also suitable for topical formulation.

Rationale to formulate Nanoemulgel:

- 1. Nanoemulsions are one of the useful nanocarrier for achieving the highest drug penetration through skin.
- 2. The difference between convention gel and nano gel is that the later will show more bioavailability, reduce the size of dose and have lesser side effect and in future prospect for industrial purpose.
- 3. Surfactant present in Nanoemulsion has the capability to loosen the lipid bilayers by breaking hydrogen bonds while penetrating into the lipid bilayers. (30)

Objective:

- I. To perform Preformulation study of Dapsone.
- II. To prepare formulation and characterization of Nanoemulsion.
- III. To perform optimization study and evaluation of Dapsone Nanoemulgel.
- IV. To perform pharmacokinetic studies of optimize formulation of Nanoemulgel.

3. Literature Review

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

3.1 Literature Review on Dapsone – A drug used for Treatment of Acne

Christine Chim et al., describe the basics about Acne vulgaris. Basically, acne is a inflammatory disorder of skin mostly caused by Propionibacterium acne, hormonal changes and some inflammatory mediators. Scientist also describe the classification of acne as per European Dermatological Forum (EDF) and American Academy of Dermatology (AAD) into three categories: Mild, Moderate and Severe based on the number of comedone. Addition to this researcher also describe the marketed formulations and related side effects. (2)

Anna Hwee Sing Heng et al., briefly discussed the epidemiological study Acne obtained from Web od Science search and studied the risk factors associated with acne severity. Also study the risk factors like family history, BMI, age and skin type for acne presentation. Moreover, association between these factors with dietary ingredients, smoking and acne severity also studied. Scientist also give demographic study of acne prevalence in the world. (3)

Abhishek Budhiraja ey al., prepared a Rosmarinic acid loaded niosomal gel having particle diameter 814.42 nm and polydispersity index 0.329. Scientist design test for in-vitro release and in-vitro skin permeation study in diseased skin. In-vitro release study was performed on the franz diffusion shell using dialysis membrane having 12,000 dalton molecular weight. Methanolic phosphate buffer of pH 5.6 filled in a receptor compartment and maintained at around 37^oC and 1000 RPM. While in-vitro permeability study was performed using male albino rate skin of less than 2mm diameter. While receptor compartment filled with phosphate buffer pH 5.5. (31)

Clinical trial on Dapsone 7.5% gel shows once a day use of this gel give satisfactory result in patients older than 12 years. Dapsone is a sulfone-based anti-inflammatory agent which give effective results in treating Acne vugaris. Clinical result suggests that minimum 2 weeks use of once daily dapsone 7.5% gel shows reduced lesions on skin and it can use up to 4 to 8 weeks. This gel also shows reduced side effect on skin compare to other formulations. (32)

Chapter 3

Literature Review

Mohammed Elmowafy et al., prepared the dapsone based nanostructured lipid carrier (NLC). The main objective behind preparing dapsone based NLC is to prepare dosage form that increase the permeability of dapsone. Emulsification / Sonication method is used for preparation of Dapsone NLC. 2% solution of Lecithin used as a lipophilic emulsifying agent. Particle size of NLC prepared by this method was found between 106 to 151 nm. The entrapment efficiency was found between 76% to 91%. Maximum steady state permeation of Dapsone was $5.3\pm0.86 \,\mu\text{g/cm}^2$.h. (33)

3.2 Literature Review on Nanoemulsion in Treatment of Acne

Jonathan P. Fast et al., describe briefly the difference between Nanoemulsion, Microemulsion and related Nanoparticles. Microemulsion are the emulsion with particle size below 100 nm and thermodynamically stable. On the other side Nanoemulsion should not be use in substitute of microemulsion because both have almost particle size in the same range but it is thermodynamically unstable. Furthermore, Nanoemulsion are more towards the transparent or translucent as compare to the milky appearance of convectional emulsions. Reason behind that is, particles with nanometer in size become translucent or transparent because at particle size is lesser than optical wavelength of visible light. (18)

Mudra Saurabh Kapoor et al., discussed about the penetration of drug from the skin, barriers of skin and gave a brief about nanoparticle's penetration mechanism. Skin is the primary and largest barrier for skin targeted drug delivery system. Skin's upper most layer is Stratum corneum is tightly densed layer made up of corneocytes anchored lamellar lipid. Most preferred route for penetration through skin is extracellular route of lipid lamella. In this article scientists also describe the various methods for biophysical evaluation of skin and various transport mechanism through skin. (28)

Abhijit A. Date et al., describe in details about different class of oils, surfactant and cosurfactant. Normally oils having abnormally long hydrocarbon chains or very high molecular weight are difficult to emulsify, on the other hand oils having shorter chains or less molecular weight for example medium chain triglycerides (MCT) and medium chains mono- and diglycerides are comparatively easy to emulsify. Opposite to this ability to solubilize the pharmaceutically active moieties should be higher in long chain triglycerides. (34)

Jamuna Bai Aswathanarayan et al., briefly discussed about the emulsification methods used in industry for the preparation of Nanoemulsion and its composition. Main focus of article is toward the method of preparation by high energy methods. Mostly various instruments like high pressure homogenizer, high shear homogenizer, probe sonicator and microfluidizer are widely used for Nanoemulsion manufacturing at large scale. Scientist discussed in details about principles and working of these instruments. For example probe sonicator used high energy sound wave for decreasing the size in Nanoemulsion, high shear homogenizer creates high turbulence which produce shear force and thus particle size reduces, high pressure homogenizer and microfluidizer worked on the same principle that is particles are pressurize to pass through the slit and reduced the particle size. (23)

M. Safaya et al., mostly discussed about the law energy method for preparation of Nanoemulsion and effect of HLB on selection of surfactant. Low energy methods like spontaneous emulsification, phase transition temperature, microemulsion dilution, phase inversion composition and D – phase emulsification in brief. Mostly spontaneous emulsification method widely used while some systems like self-emulsification dosage form uses microemulsion dilution method for the Nanoemulsion preparation. Mostly these methods are used in formulating temperature sensitive pharmaceutical active agents. Scientist also discussed about various application of Nanoemulsion. (35)

S.A. Chime et al., discussed in brief about different Emusion based systems like Self emulsifying drug delivery system (SEDDS), Nano self-emulsified drug delivery system (NSEDDS), Microemulsion, Nanoemulsion, its manufacturing methods, characterization tests and application of these systems in treatment of various diseases. Basically, Nanoemulsion have inherent ability to dissolve large amount of insoluble drugs and naturally protect the pharmaceutically active agent from hydrolytic and enzymatic degradation made it preferred drug delivery system. (24)

Vivek Borhade et al., made a clotrimazole containing oral Nanoemulsion for the treatment of Malaria. The main objective of study was to improve the solubility and thus dissolution of lipophilic clotrimazole. Nanoemulsion prepared by using Capryol 90, Solutol HS 15 and Gelucire as oil, surfactant and cosurfactant respectively with 25 mg/ml of clotrimazole. The mean particle size of Nanoemulsion is less than 25 nm at specific pH. This Nanoemulsion released 100% of drug within 15 min of administering. (36)

Qian Xu et al., formulate a W/O Nanoemulsion of Baicalin for the treatment of Hepatitis B virus. Base of this research is that formation of lymphatics will eradicate the viruses. Researchers explain Ternary Phase Diagram in detail. A ratio of Phosphotidylcholine and propylene glycol used in different proportion (S_{mix}). Batches of ternary phase diagram was prepared by using dropwise titration method under magnetic agitation until mixture become clear. (37)

3.3 Literature Review on Nanoemulgel

Gururaj C. Aithal et al., developed a quercetin based Nanoemulgel for the treatment of periodontitis with the help of cinnamon oil, tween 80, Carbitol[®] and poloxamer 407. Overall, this formulation shows good stability, sol-gel transition and syringebility. Scientist also using computational study for evaluation of sol to gel phase transformation. In addition to this, ternary phase diagram for S_{mix} ratios 1:1, 2:1, 4:1, 1:4, 1:0 and 3:1 was applied to identify the perfect ratio of surfactant, co-surfactant and oil phase with respect to water. (38)

Yogeshwar G. Bachhav et al., prepared Microemulgel of fluconazole and evaluate it in-vitro and in-vivo. Main objective of preparing this system is proving that microemulsion based gel improve the drug penetration and thus control the inflammation quickly. Scientist used Cremophor EL and Capryol 90 as a surfactant in preparation of microemulsion having globule size 24 nm and polydispersity index 0.98. While microemulgel is formed by using the gelling agents like Hydroxypropyl methylcellulose (Methocel K4M) and CarbopolR ETD 2020. Bio adhesion study of this gel is performed by preparing special assembly using agar plate USP disintegration test apparatus. Addition to this, small clinical trial study was performed between Microemulgel and marketed product Candid-VR gel to check the efficacy. (39)

Patr'ıcia C. Pires et al., prepared a Nanoemulgel of phenytoin and fosphenytoin for intranasal administration of drug for treatment of convulsant. The main objective of preparing this dosage form is to achieve immediate and sustained drug release from the dosage form. The formulation has around 10% of non-aqueous phase which is responsible for sustain release of drug. Prepare of Nanoemulsion by using Miglyol 812 as oil phase, while Tween 80 and Transcutol P as surfactant and cosurfactant respectively. (40)

Chatchai Sungpud et al., prepared Mangostin loaded Nanoemulgel using virgin coconut oil that is used as anti-oxidant or antimicrobial. Mostly bioactive polyphenols from mangosteen peel was extracted by using organic solvent. Specifically, emulsion was stabilizing by using combination of surfactant and cosurfactant like Span 20 and Tween 20 respectively by preparing batches with different HLB values between 12 to 15. (41)

Manish Srivastava et al., prepared nanoemulgel of ketoprofen with eugenol to get synergistic action in treatment of periodontitis. Research was simply used oil phase as eugenol in preparation of Nanoemulsion which also have a antibacterial activity. Results of this research shows combination of eugenol with ketoprofen for the treatment of periodontitis give synergistic action and also show significant antibacterial, analgesic and anaesthetic properties. (42)

Manish Kumar Jeengar et al., formulate curcumin and emu oil based Nanoemulgel for the treatment of inflammation. Curcumin has a very good anti-inflammatory activity but it has poor solubility and poor permeability problem. Thus, preparation of Nanoemulgel provide a good alternative to formulate curcumin-based product because preparation of Nanoemulsion solve the solubility problem, while lipophilic oil droplets also improve the penetration through skin by acting as a lipidic carrier. (43)

Sonal Setya et al., formulated Selegilline hydrochloride based Nanoemulgel for the treatment of Parkinson's disease. Selegiline HCl containing w/o emulsion was prepared by combination of low energy and high energy methods. Selection of surfactant is based on its solubility in aqueous phase and HLB balance. Simple Selegiline gel was prepared and it was compared with Nanoemulgel at various level in in-vivo and in-vitro penetration study, thermodynamic stabilility study, etc. (44)

Omar Samia et al., formulated Carbamazepine Nanoemulgel for the treatment of Epilepsy. Normally, Carbamazepine is delivered through tablet but due to its highly hydrophobic nature, it is showing wide range of variation in dissolution time and interpatient variations. Thus, formulating an intranasal o/w mucoadhesive Nanoemulgel believe to be improve the drug's intersubjective variability. 0.1% Carbamazepine Nanoemulsion was prepared by law energy method, stirring on magnetic stirrer until clear solution will obtained. The findings of this research were satisfactory to target brain by olfactory mucosa route. (45) **Yujuan Mao et al.,** prepared Epriomectin containing o/w Nanoemulgel for the treatment of Endo and ectoparasites. Nanoemulgel is suitable for the transdermal delivery of API having highly lipophilicity and high dose. Scientists choose the method to prepare Nanoemulsion is continuous stirring on magnetic stirrer followed by Homogenizing it at 8000 RPM. Overall findings of study suggest that formulating Nanoemulgel is good approach to deliver the drug transdermally because of its mucoadhesive nature. (46)

Swati Pund et al., prepared a Leflunomide Nanoemulgel for the treatment of psoriatic lesions and melanoma affected skin regions. Basically, this article is a mechanistic validation for the proof of concept of effective topical delivery of Leflunomide. Leflunomide is a newly approved disease modifying anti-rheumatic drug. It was hypothesized that it is useful in treatment of psoriasis and symbiotic relationship between keratinocytes and melanocytes. Nanoemulsion of leflunomide was prepared by low energy method. Prepared Nanoemulgel gave satisfactory result in various physicochemical tests, while toxicity study suggested that high therapeutic response which leads to reduced therapeutic dose and reduced systemic side effects. (47)

4. Drug & Excipients Details

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

4.1 Drug Related Information

Table 4 Information of Dapsone

4.1.1 Basic Information: (48)

Synonym:	• 1,1'-sulfonylbis(4-aminobenzene)		
	• 1,1'-Sulfonylbis[4-aminobenzene]		
	• 4-(4-amino-benzenesulfonyl)-phenylamine		
	• 4-(4-aminophenylsulfonyl)aniline		
	• 4-(4-aminophenylsulfonyl)benzenamine		
Description:	Dapsone is a sulfone based antibiotic having wide range of anti-bacteria		
	l activity but mostly it is used to treat infection caused by mycobacteriu		
	m leprae. Mechanism of action of Dapsone is similar to the sulfonamide		
	class of antibiotic that involve in the folic acid synthesis inhibition. It sh		
	ould also used to treat malaria.		
Туре:	Small molecule, approved, Investigational		
Structure			
Molecular weight:	248.301 gm/mol		
Chemical formula:	$C_{12}H_{12}N_2O_2S$		
IUPAC Name:	4-(4-aminobenzenesulfonyl)aniline		
Category:	Anti-acne		
	Anti-bacterial		
	Anti-infective		

	Anti-mycobacterial
Chemical class:	Benzene and its substituted derivatives
Sub class:	Benzenesulfonyl compounds

4.1.2 Pharmacodynamic:

Table 5 Pharmacodynamic information of Dapsone (48)

Introduction	Dapsone is a sulfone with antibacterial, anti-inflammatory and antibiotic
of API:	properties. It is the principal drug that recommended by the WHO for the
	treatment of leprosy. It is used for treating malaria to as anti-inflammatory agent
	and Pneumocystic carinii pneumonia. It is rapidly and almost completely
	absorbed through GIT. However, it tends to be retained in skin and muscle and
	especially in the liver and kidney.
Absorption:	70 to 80% following oral administration.
Protein	70 to 90%
binding:	
Metabolism:	Hepatic, mostly CYP2E1-mediated.
Route of	Renal
elimination:	
Half life:	28 hours (range 10-50 hours)
Toxicity:	Overdosage might be expected to produce nasal congestion, syncope, or
	hallucinations. Measures to support blood pressure should be taken if necessary.
Affected	Mycobacteria
organism:	
	Mycobacterium leprae
Food	Take without regard to meals.
Interaction:	

4.1.3 Drug Interaction: (49)

Table 61	Drug	interaction	of 1	Dansone	gel	7 5%
1 abic 0	Drug	meraction	01 1	Dapsone	gui	1.570

Drug	Interaction
Folinic acid	Combined used with dapsone will cause decrease in therapeutic activity.
Warfarin	Therapeutic activity decreases on combined use.
Albendazole	Dapsone could affect the metabolism of albendazole.
Aldosteron	Dapsone would decreses the metabolism of albendazole.
Alpha tocopherol	Combined use will decreases the metabolism of alpha tocopherol.
Ambroxol	The metabolism of Ambroxol decrease.
Amphotericin B	The metabolism of Amphotericin B decrease.
Verapamil	The metabolism of Verapamil decrease.
Trimethoprim	The serum concentration of Dapsone would increased on combined with
	Trimethoprim.

4.1.4 Physicochemical Properties:

State:	Solid
Melting point:	175.5°C
Water solubility:	380 mg/L
Log P:	0.97
рКа:	2.41
Rule of Five:	Yes
Veber's Rule:	NO
Ghose filter:	Yes

4.2 Excipients Related Information

4.2.1 Triacetin: (50)

Triacetin is a triglyceride obtained by acetylation of the three hydroxy groups of glycerol. It has fungistatic properties (based on release of acetic acid) and has been used in the topical treatment of minor dermatophyte infections. It has a role as a plant metabolite, a solvent, a fuel additive, an adjuvant, a food additive carrier, a food emulsifier, a food humectant and an antifungal drug. It derives from an acetic acid.

Synonyms	Glyceryl triacetate
	Glycerol triacetate
	Glycerin triacetate
Molecular Formula	C ₃ H ₅ (OCOCH ₃) ₃
Structure	
Molecular Weight	218.2 g/mol
Colour	Colorless somewhat oily liquid
Odour	Slightly fruity or fatty odor
Taste	MILD, SWEET TASTE, BITTER ABOVE 0.05%
Boiling Point	258-259 °C
Melting Point	-78°C

Table 8 Information regarding Triaceti
--

Solubility	Slightly soluble in carbon disulfide; miscible with	
	alcohol ether chloroform	
Density	1.1583 g/cu cm at 20 °C	
Vapor Pressure	0.00 mmHg	
1	6	
Log P	0.25	
C		
Stability	Chemical stability: Stable under recommended storage	
	conditions	

4.2.2 Labrasol: (51)

Labrasol is a PEG derivative of medium chain fatty acid triglyceride of capric and caprylic acid.

Description	A nonionic oil-in-water surfactant used as solubilizer in topical formulations
Synonyms	Caprylocaproyl Polyoxyl-8 glyceride
Application	Solubilizer, Bioavailability enhancer, Surfactant in capsule filling, SMEDDS, Suspension, Solution, Topical penetration enhancer, Processing aid.
Colour	Transparent liquid
Odour	Characteritic
Density	80 – 110 mPa.s at 20 ^o C
HLB	12

4.2.3 Transcutol: (52)

Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol.

Synonyms	Diethylene glycol monoethyl ether	
	2-(2-Ethoxyethoxy)ethanol	
	CARBITOL	
Molecular Formula	CH ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OH	
Structure	о о . Н	
Molecular Weight	134.17 g/mol	
Colour	Colorless hygroscopic liquid	
Odour	Mildly sweet odour	
Taste	Bitter	
Boiling Point	396 °F at 760 mm Hg	
Melting Point	-108 °F	
Solubility	Miscible with ethanol, acetone, benzene; very soluble in ethyl ether; water miscible	
Density	0.99 at 68 °F	
Log P	-0.54	
Decomposition	When heated to decomposition it emits acrid smoke and irritating fumes	

Table 10 Information regarding Transcutol

4.2.4 Tween 80: (53)

Polysorbate 80 is obtained from polyethoxylated sorbitan and oleic acid. The hydrophilic groups present in the compound are polyethers which also known as polyoxyethylene groups. In the nomenclature of polysorbates, the numeric designation following polysorbate refers to the oleic acid, a lipophilic group.

Synonyms	Polysorbate 80 (glycol),		
	Polyoxyethylene 20 sorbitan monooleate, Inhibited		
	ethylene glycol,		
	2-hydroxyethyl 2-deoxy-3.5-bis-O-(2-hydroxyethyl)-		
	6-O-{2-[(9E)-octadec-9-		
	enoyloxy]ethyl}hexofuranoside,		
	PEG-3 Sorbitan oleate		
Molecular Formula	$C_{32}H_{60}O_{10}$		
Structure	Ho~o^o^o^o_o^o_o_o^o_o^o_H		
Molecular Weight	604.8 g/mol		
Colour	Amber colored liquid		
Odour	Characteristic		
Boiling Point	>100°C		
Solubility	Very soluble in water, Soluble in ethanol, cottonseed oil,		
	corn oil, ethyl acetate, methanol, toluene		
Density	1.06–1.09 g/mL		
HLB	15		

 Table 11 Information regarding Tween 80

4.2.5 Carbopol 934: (54)

2-methylbutyric acid is a methylbutyric acid comprising a butyric acid core carrying a 2methyl substituent. Produced from amino acid leucine during nutrient starvation in bacteria. It has a role as a bacterial metabolite and a human metabolite. It is a conjugate acid of a 2methylbutyrate. Ethylmethylacetic acid is a carboxylic acid found in low amounts in normal humans. It has been described in the urine of individuals with 2-ethylhydracrylic aciduria associated with short/branched-chain acyl-CoA dehydrogenase deficiency.

Synonyms	2-Methylbutanoic acid		
	2-METHYLBUTYRIC ACID		
	DL-2-Methylbutyric acid		
	Butanoic acid		
Molecular Formula	$C_{5}H_{10}O_{2}$		
Structure			
	0 ,n		
Molecular Weight	102.13 g/mol		
Colour	White powder		
Boiling Point	176.5 °C		
Solubility	In water 45 mg/mL at 20 °C		
Log P	1.18		

Table 12 Information regarding Carbopol 934

Chapter 4

4.3 Plan of Work

1. Literature Review:

2. Preformulation Study:

- a) Organoleptic Properties
- b) Solubility Study
- c) Melting Point
- d) Partition Coefficient
- e) UV Spectrum Analysis
- f) FT-IR
- g) DSC
- h) Antibacterial Assay / Activity Study

3. Selection of Oil Phase, Surfactant and Cosurfactant:

4. Formulation and Evaluation Nanoemulsion:

- a) Physical Appearance
- b) Physical Stability
- c) Droplet Size
- d) Zeta Potential
- e) Polydispersity Index

5. Formulation and Evaluation Nanoemulgel:

- a) Drug Content
- b) pH Determination
- c) Rheological Measurement
- d) Shelf life Determination
- e) In-vitro Diffusion Study
- f) Ex-vivo Diffusion Study

Materials & Methods

5. Materials & Methods

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

5.1 List of Materials

Table 13 List of materials

Sr. No.	Name of Material	Manufacturer
1.	Dapsone	Atul Chemicals ltd.
2.	Labrasol	Gattefosse
3.	Transcutol	Gattefosse
4.	Tween 80	Sigma-Aldrich
5.	Labrafil	Gattefosse

5.2 List of Equipment

Sr. No.	Equipment Used	Model	Manufacturer
1.	Weighing balance	CITIZEN	-
2.	Magnetic Stirrer	REMI Equipmetn's	-
3.	Particle Size Analyser	Horiba	SZ 100
4.	Double beam Spectrophotometer	Shimadzu	UV 1800
5.	pH Meter	Chemical lab	-
6.	Differential scanning calorimeter	Hitachi	DSC - 7020
7.	Brookfield Viscometer	Brookfield	-
8.	FT-IR	Jasco	FTIR/6100
9.	Vortex	Labpro	-

Table 14 List of equipments used

5.3 Evaluation Preformulation Parameters

Preformulation study is the study for determination of physicochemical properties of the drug powder and related parameters. This information will subsequently be helped in different approaches in formulation development. Moreover, this study has impact on the performance and development of safe, stable and efficacious dosage form.

5.3.1 Organoleptic Properties:

Around 500 mg of Dapsone powder was equally distributed on petri plate and organoleptic properties like appearance, colour and odour were evaluated manually.

5.3.2 Solubility Study:

Solubility study of Dapsone was performed by using Saturation solubility method. In this method Dapsone was gradually dissolving predetermined amount of drug in glass vial and particular solvent at room temperature and on magnetic stirrer. Solubility of Dapsone in different solvents was determined by ability of solvent to dissolve maximum quantity of drug.

5.3.3 Melting Point

Melting point of Dapsone was determined by using thin walled Capillary. Capillary was sealed at one end. Small amount of drug powder was carefully filled in to the capillary and make sure that power touches the close end of capillary. Then joint capillary and thermometer by thread and put it into the beaker containing paraffin oil. Its temperature was gradually increasing and the temperature at which powder turns into liquid noted as melting point.

5.3.4 UV Spectrum Analysis

UV-VIS Spectrophotometer of Shimadzu UV-1800 Japan was used for identification of compound and getting standard curve. Identification of Dapsone was perform by finding maximum wavelength of compound and compare it with literature. While standard curve of Dapsone was took in two different system one was in methanol and second was in phosphate buffer pH 5.5 which is equivalent to diseased skin.

5.3.5 FT-IR:

FTIR (Jasco FT-IR 6100 Germany) was used for identification of drug and check out any present impurities in the sample. To perform a study firstly Dapsone was diluted with dried potassium bromide (KBr) in a 1:100 ratio and triturate it properly. Each KBr disc scanned at a resolution of 2 cm and at 4 mm/s over a wave number region of 4000–400 cm-1 and recorded by using IR solution software. The characteristic peaks of Dpson were recorded and compared.

5.3.6 DSC:

Differential scanning calorimetric (DSC) (Hitachi DSC-7020) analysis was used for analyse the thermal behaviour of drug. 4 mg of Dapsone was taken for scanning the sample. This was kept on aluminium pan which was initially hermetically sealed. Sample kept was heated at a temperature rate of 10°C/ min under nitrogen with empty aluminium pan as a reference. Range of temperature is from 30-300°C.

5.4 Formulation and Evaluation of Nanoemulsion

Method of Preparation:

Nanoemulsion was prepared by using low energy method. Magnetic stirrer was used for the preparation of Nanoemulsion. Oil phase or discontinuous phase was prepared by dissolving dapsone in oil phase, surfactant and co-surfactant. While continuous phase or aqueous was prepared by dissolving co-surfactant in required quantity of distilled water. Then, add oil phase dropwise into water phase and stir on magnetic stirrer at room temperature for specific time and RPM (rounds per minutes).

5.4.1 Screening of Oil, Surfactant and Cosurfactant

Selection of oil phase, surfactant and co-surfactant is based on its solubility for dapsone. To find out the solubility of oil phase, surfactant and co-surfactant 1gm of each component taken one by one and gradually adding predefined amount of dapsone simultaneously stirring on magnetic stirrer. Maximum amount of drug loading

5.4.2 Physical Appearance

Prepared Nanoemulsion must be clear.

5.4.3 Physical Stability

The physical stability of emulsion-based system is very important for its performance. Phase separation might possibly end in precipitating out of API. Moreover, phase separation affecting physical appearance as well. Physical stability was checked by putting a Nanoemulsion at room temperature for 24 hours.

5.4.4 Droplet Size & Polydispersity Index

The average particle size and polydispersity index of Nanoemulsion was checked in particle size analyser (Horiba SZ-100) which is based on light scattering method. Polydispersity index shows particle size distribution throughout the system. Target particle size was 200 nm and polydispersity index were near to 1.

5.5 Formulation and Evaluation of Nanoemulgel

Basic Methods of Preparation:

Nanoemulgel was prepared by mixing previously prepared Nanoemulsion and gel phase. Mostly two different approaches: First one is simultaneously dispersed gelling agent into a water and this gel was directly added into a nanoemulsion while second method is to add gelling agent directly into the nanoemulsion and continuously stir it on magnetic stirrer till gelling agent was dissolved and form a gel.

5.5.1 Drug Content

Drug content was estimated by performing an assay of formulation. To perform an assay weighed quantity of dapsone gel was dissolved in methanol. Then make a required dilution and measure the absorbance of each sample using UV-VIS spectroscopy.

5.5.2 pH Determination

pH of Nanoemulgel was determined by using digital pH meter. To measure the pH of Nanoemulgel dispersed the 0.5 gm of Nanoemulgel in 50ml water.

5.5.3 Rheological Measurement

Rheological characterization of optimized gel formulation was performed by using Brookfield Rheometer. Viscosity is important parameter which gives idea about spread ability of Nanoemulgel. To determine the viscosity spindle C 50-1 was used at 25^oC and 80 RPM.

5.5.4 Physical Stability Study

Physical stability of Nanoemulgel was checked at various performance parameters like vesicular shape and size, phase separation, appearance, pH, drug content, etc. The stability assessment of optimized formulation was performed by storing Nanoemulgel in glass vial and in an atmospheric condition.

5.5.5 Antibacterial Activity Study

Antibacterial activity of dapsone gel was evaluated by cup plate method. Agar gel was taken as bacterial growth media while bacteria such as S. aureus and E. coli were used. Firstly, sterilized molten nutrient agar was poured into previously sterilized petri plate and allowed to solidify. Then plates were swabbed with 100 μ l culture of microbes. Immediately after this made a cylinder cup and incubated at 37°± 0.5°C for 48 h. At last zone of inhibition of bacterial growth were measured.

5.5.6 In-vitro Diffusion Study

This study also called in-vitro drug release study and was performed by using Frans diffusion cell. Cellophane membrane was used as semipermeable membrane and placed between receptor and donor compartment. While methanolic phosphate buffer of pH 5.6 was filled in the receptor compartment. 1 gm of gel was equally spread on donor compartment. 1 ml of aliquot was replaced with fresh buffer solution at specific time interval. The withdrawn sample was analyzed using UV spectroscopy.

6. Results

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

6.1 Preformulation Study

6.1.1 Organoleptic Properties:

Table 15 Organoletic properties of Dapsone

Parameters	Inference	
State	Solid	
Colour	White Crystalline Powder	
Taste	Characteristic	
Odour	Odourless	

6.1.2 Melting Point Determination:

Melting Point: 179°C

6.1.3 UV-VIS Spectrum Study:

The Determination of λ max by UV spectroscopy is necessary for future analytical works. The absorption maxima λ max of drug was determined using UV spectroscopy. A stock solution of known concentration is prepared and analysed using double beam UV visible spectrophotometer with slit width of 1 cm using pH 6.8 simulated salivary fluid in range of 200-400 nm.

A. Standard Curve in Phosphate buffer pH 5.5:

Conc.	Absorption
1	0.1339
2	0.1976
3	0.3265
4	0.4111
5	0.5535
6	0.6742
7	0.7918
8	0.9294

Table 16 Absorption table for Phosphate buffer pH 5.5

B. Standard Curve in Methanol:

Concentration	Absorption	
2	0.2528	
3	0.4401	
4	0.5477	
5	0.6254	
6	0.8746	
7	0.9752	
8	1.4394	
10	1.0922	

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

Chapter 6

Results

Figure 15 Standard curve of dapsone in Methanol

6.1.3 FT-IR:

For FTIR study, the drug was mixed with KBr and the scan was run at resolution of 4000-400cm⁻¹ in FTIR Spectrophotometer. The FTIR spectra of pure drug can be obtained in this manner.

Experimental Condition:

Sample	Dapsone
Light Source	Standard
Detector	TGS
Resolution	4 cm^{-1}

Figure 16 IR graph of Dapsone

ıe
1

Functional Group	Type of Rotation	Range	Test Wave-number
N-H	Stretching	-	3453.88
N-H	Stretching	3250-3400	3361.32
C=C	Banding	1580-1680	1633.41
0-Н	Stretching	3200-3500	3453.88

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

C-C	Stretching	1400-1500	1499.38
-SO ₂	Asymmetric Stretching	1250-1335	1277.61
-SO ₂	Symmetric Stretching	-	1148.4
=C-H	Aromatic Banding	860-680	715.61
-SO ₂	Scissoring	-	546.72

6.1.4 DSC:

• The DSC thermogram of Dapsone showed thermal peack at 178.8^oC and with the energy - -25.70 mW.

Figure 17 DSC thermogram of Dapsone

6.2 Formulation and Evaluation of Nanoemulsion

6.2.1 Screening of Oil, Surfactant and Co-surfactant:

Table 20 List of oil, surfactant and co-surfactant for solubility study

Oil Phase

Components	Concentration (mg)
Triacetin	110
Neem Oil	7
α-Tocopherol	20
Clove Oil	95
Eucalyptus Oil	60
Tea Tree Oil	50
Castor oil	15
Isopropyl palmitate	5
Seasam oil	5
Corn oil	10
Olive oil	10

Surfactant:

Components	Concentration (mg)
Glyceryl mono-oleate	20
Miglyol	7
Campryol 90	80
Prulol	25
Labrafil	15
Labrasol	130

Co-surfactant:

Components	Concentration (mg)	
Transcutol	110	
Tween 80	10	

Chapter 6

Results

Figure 18 Graphical representation of solubility study
6.2.2 Batch Details

6.2.2.1 Selection of Surfactant and Co-surfactant:

Table 21 Batch Details for Selection of Surfactant and Co-surfactant

Sr No	Oil Phase	Surfactant	Cosurfact ant	Water	Batch Quantity	Stirring Time	Inference
1	Olive+Clove+ Triacetin (TA) 2.5+1.3+1.2gm	Capryol 90 2.400gm	Tween 80 0.600gm	2.0gm	10.0gm	15-20 min	Emulsion was break.
2	Clove+Olive Oil 1.000+0.750gm	Capryol 90 0.750gm	~	7.5gm	10.0gm	15-20min	Emulsion was break.
3	Clove oil+TA 0.500+1.0gm	Capryol 90 0.750gm	Transcutol 0.750gm	7.0gm	10.0gm	15-20 min	Clear Emulsion + Phase Separation
4	Clove oil 0.750gm	Cremophor EL 0.350gm	Transcutol 0.350gm	3.5gm	5.0gm	15-20 min	Clear Emulsion + Phase Separation
5	Capryol 90 0.375gm	Cremophor EL 0.200gm	Labrasol 0.175gm	1.75gm	2.5gm	15-20 min	Milky Emulsion
6	Clove oil 90 0.375gm	Cremophor EL 0.200gm	Labrasol 0.175gm	1.75gm	2.5gm	15-20 min	Milky + Immediately Break
7	Clove oil 0.375gm	Capryol 90 0.200gm	Labrasol 0.175gm	1.75gm	2.5gm	15-20 min	Milky Emulsion

Results

8	Clove oil 0.375gm	Tween 80 0.300gm	Span 80 0.075gm	1.75gm	2.5gm	15-20 min	Hazy Emulsion
9	Clove oil + TA 0.200+0.200gm	Tween 80 0.300gm	Span 80 0.075gm	1.75gm	2.5gm	15-20 min	Milky + Immediately Break
10	Clove oil + TA 0.200+0.200gm	Poloxamer 407 0.200gm	Transcutol 0.125gm	1.775g m	2.5gm	15-20 min	Milky + Stable Emulsion
11	Clove oil + TA 0.200+0.200gm	Cremophor 0.200gm	Transcutol 0.125gm	1.775g m	2.5gm	15-20 min	Milky + Phase Separation
12	Clove oil + TA 0.200+0.200gm	Capryol 90 0.200gm	Labrasol 0.125gm	1.775g m	2.5gm	15-20 min	Clear emulsion but phase separated
13	Clove oil + TA 0.125gm+0.25g	Capryol 90 0.180gm	Transcuol 0.180gm	1.75gm	2.5gm	30min	Milky and Break
14	Clove oil + TA 0.250+0.250gm	Poloxamer 407 0.125gm	Transcuol 0.125gm	1.75gm	2.5gm	30min	Milky

Inference:

Selected Oil Phase and Surfactant & Co-surfactant:

- 1. Triacetin + Capryol 90
- 2. Triacetin + Transcutol + Labrasol

Note: Selection of Oil phase and Surfactant & Co-surfactant is based on its capability of forming <u>Clear and Stable Emulsion</u>.

6.2.2.2 Surfactant and Co-surfactant Ratio Study:

Sr. No.	Oil	Surfactant	Water	Batch Size	Stirring Time	Inference
1	Triacetin 0.187gm	Capryol 90 0.187gm	2.12 gm	2.5 gm	30 min	Break after some time
2	Triacetin 0.260gm	Capryol 90 0.110gm	2.12 gm	2.5 gm	30 min	Break after some time
3	Triacetin 0.110gm	Capryol 90 0.260gm	2.12 gm	2.5 gm	30 min	Break after some time

Table 22 Batch details for Triacetin and Capryol 90 ratio study

Inference:

This combination of Oil Phase and Surfactant is selected for further study because it gives clear and stable emulsion.

Sr. No.	Oil	Surfactant	Water	Batch Size	Stirring Time	Inference
1	Triacetin 0.375gm	Transcutol 0.375gm	1.75gm	2.5gm	30 min	Hazy but clear on slightly heating
2	Triacetin 0.225gm	Transcutol 0.525gm	1.75gm	2.5gm	30min	Slightly Hazy
3	Triacetin 0.300gm	Transcutol 1.200gm	3.50gm	5.0gm	30min	Clear Emulsion + Stable
4	Triacetin 0.150gm	Transcutol 1.35gm	3.50gm	5.0gm	30min	Clear Emulsion + Stable

Table 23 Batch details for triacetin and Transcutol ratio study

Inference:

This combination of Surfactant and Co-surfactant is rejected for further study because emulsion form by them are break after some period of time mostly within 1-2 hours

6.2.2.3 Maximum Drug Loading Study:

Sr.		0.1	Surfactan	0.0.4		XX7 /	Batch	Stirring	X 6
No	API	Oil	t	C0S - A	C0S - B	Water	Size	Time	Inference
1	70mg	Triacetin 0.280gm	Labrasol 1.120gm	Transcutol 0.200gm	~	2.4gm	4.0gm	30min	Clear Emulsion + Break after some time + On slightly heating emulsion become hazy
2A	100m g	Triacetin 0.300gm	Labrasol 0.900gm	Transcutol 0.200gm	Tween 80 0.200gm	2.4gm	4.0gm	>24 hr	Clear emulsion on overnight stirring
2B	100m g	Triacetin 0.300gm	Labrasol 0.900gm	Transcutol 0.200gm	Tween 80 0.200gm	2.4gm	4.0gm	>48 hr	Clear emulsion on overnight stirring
3	100m g	Triacetin 0450gm	Labrasol 0.950gm	Transcutol 0.200gm	~	2.4gm	4.0gm	2 hr	~
4	150m g	Triacetin 0.150gm	Transcutol 1.35gm	~	~	3.35gm	5.0gm	30min	Milky + Break
5	150m g	Triacetin 0.250gm	Transcutol 1.00gm	Labrasol 0.250gm		3.15gm	5.0gm	30min	Milky + Stable for few hours
6	150m g	Triacetin 0.250gm	Transcutol 1.00gm	Labrasol 0.250gm	~	3.15gm	5.0gm	30min	Milky + Break Immediately
7	200m g	Triacetin 0.280gm	Transcutol 1.120gm	Labrasol 0.200gm	~	2.4gm	4.0gm	30min	Hazy Emulsion but after few hours it will be clear and Oil phase was slightly separated.

Table 24 Batch details for drug loading studies

Results

8A	~	Triacetin 0.280gm	Transcutol 1.120gm	Labrasol 0.35+0.35 gm	~	2.4gm	4.0gm	30min	Clear emulsion and comparatively stable emulsion
8B	100 mg	Triacetin 0.280gm	Transcutol 1.120gm	Labrasol 0.35+0.35 gm	~	2.4gm	4.0gm	30min	Clear emulsion and Stable on storing in Refrigerator; Phase separated on addition of drug
9A	150 mg	Triacetin 0.450gm	Labrasol 0.850gm	Transcutol 0.300gm	Tween 80 0.200gm	2.4gm	4.0gm	~24 hr (1000 RPM)	Milky + Separated
9B	150 mg	Triacetin 0.450gm	Labrasol 0.850gm	Transcutol 0.300gm	Tween 80 0.200gm	2.4gm	4.0gm	~48 hr(1000 RPM)	Milky + Separated
10 A	125 mg	Triacetin 0.400gm	Labrasol 0.700gm	Transcutol 0.300gm	Tween 80 0.200gm	2.4gm	4.0gm	~48 hr (800RP M)	Clear + Yellowish + Stable Emulsion
10 B	125 mg	Triacetin 0.400gm	Labrasol 0.700gm	Transcutol 0.300gm	Tween 80 0.200gm	2.4gm	4.0gm	~48 hr (800RP M)	Clear + Yellowish + Stable Emulsion
11 A	125 mg	Triacetin 0.500gm	Labrasol 1.000gm	Transcutol 0.250gm	Tween 80 0.200gm	3.0gm	5.0gm	~24 hr (800 RPM)	Clear + Yellowish + Stable Emulsion
11 B	125 mg	Triacetin 0.500gm	Labrasol 1.000gm	Transcutol 0.250gm	Tween 80 0.200gm	3.0gm	5.0gm	~24 hr (800 RPM)	Clear + Yellowish + Stable Emulsion

	105		T 1 1	T 1	Transcut			~24 hr	Clear +
12	125m	Triacetin	Labrasol	Transcutol	റി	3 ()om	5 ()om	(800	Yellowish +
12	g	0.500gm	1.000gm	0.250gm	01	5.0gm	5.05m	(000	
	0	0			0.200gm			RPM)	Stable Emulsion

Inference:

- 1. Maximum Drug Loading: 125mg
- 2. S_{mix} Ratio: 9:4, 7:5, 2:1
- 3. Probable Particle Size: Around 300nm
- 4. Probable Formulation:

Table 25 Propable formulation for Nanoemulgel system

Ingredients	Concentration
Dapsone	125mg
Triacetin	10%
Labrasol	15%
Transcutol	10%
Tween 80	5%
Water	60%

6.2.3 Particle size and PDI measurement of Batches:

Table 26 List of Particle size analysis and PDI

Sr	API	Oil	Surfacta	CoS-A	CoS-R	Aqueous	Particle	PDI	
No	1 1 1	On	nt		C00-D	Phase	Size		
2 ^	100	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:	0.326	
ZA	mg	0.300gm	0.900gm	0.200gm	0.200gm	2.4gm	431 nm	0.320	
28	100	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:	0.420	
2 B	mg	0.300gm	0.900gm	0.200gm	0.200gm	2.4gm	357 nm	0.420	
10	125	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:	0.635	
A	mg	0.400gm	0.700gm	0.300gm	0.200gm	2.4gm	709 nm	0.035	

10	125	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:	0.697
В	mg	0.400gm	0.700gm	0.300gm	0.200gm	2.4gm	867 nm	0.087
11	125	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:	0.602
A	mg	0.500gm	1.000gm	0.250gm	0.200gm	3.0gm	8257 nm	0.002
11	125	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:	0.660
В	mg	0.500gm	1.000gm	0.250gm	0.200gm	3.0gm	926 nm	0.009

6.2.4 pH Analsysis:

Fable	27	Table	of	bН
I aore		1 4010	01	

Sr. No.	Batch No.	рН
1.	2A	5.43
2.	2B	5.57
3.	10A	6.02
4.	10B	5.87
5.	11A	6.23
6.	11B	6.19

6.2.5 Physical Appearance of Nanoemulsion:

Visual Appearance: Clear and Slightly yellowish solution

Figure 19 Physical appearance of nanoemulsion

6.3 Formulation and Evaluation of Nanoemulgel

6.3.1 Batch Details:

Sr. No	API	Oil	Surfactan t	CoS - A	CoS - B	Water	Gelling Agent	Inference
2A	100 mg	Triacetin 0.300gm	Labrasol 0.900gm	Transcutol 0.200gm	Tween 80 0.200gm	2.4gm	Carbopol 934 (1%)	Hazy but Good consistency
2B	100 mg	Triacetin 0.300gm	Labrasol 0.900gm	Transcutol 0.200gm	Tween 80 0.200gm	2.4gm	Carbopol 934 (1%)	Hazy but Good consistency
10 A	125 mg	Triacetin 0.400gm	Labrasol 0.700gm	Transcutol 0.300gm	Tween 80 0.200gm	2.4gm	Carbopol 934 (1%)	Hazy but Good consistency
10 B	125 mg	Triacetin 0.400gm	Labrasol 0.700gm	Transcutol 0.300gm	Tween 80 0.200gm	2.4gm	Carbopol 934 (1%)	Hazy but Good consistency
11 A	125 mg	Triacetin 0.500gm	Labrasol 1.000gm	Transcutol 0.250gm	Tween 80 0.200gm	3.0gm	Carbopol 934 (1%)	Hazy but Good consistency
11 B	125 mg	Triacetin 0.500gm	Labrasol 1.000gm	Transcutol 0.250gm	Tween 80 0.200gm	3.0gm	Carbopol 934 (1%)	Hazy but Good consistency

Table 28 Batch details for preparation of Nanoemulgel

Inference:

Study shows 1% gel of Carbopol give hazy but good consistency gel.

6.3.2 pH Analysis:

Sr. No.	Batch No.	pH
1.	2A	6.9
2.	2B	7.02
3.	10A	7.25
4.	10B	7.08
5.	11A	6.86
6.	11B	7.03

Table 29 ph Analysis of Nanoemulgel

6.3.4 Particle size Analysis:

Sr No	API	Oil	Surfacta nt	CoS-A	CoS-B	Aqueous Phase	Particle Size
2.4	100	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:
ZA	mg	0.300gm	0.900gm	0.200gm	0.200gm	2.4gm	750 nm
n	100	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:
2D	mg	0.300gm	0.900gm	0.200gm	0.200gm	2.4gm	654 nm
10	125	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:
A	mg	0.400gm	0.700gm	0.300gm	0.200gm	2.4gm	956 nm
10	125	Triacetin	Labrasol	Transcutol	Tween 80	Water	D90:
В	mg	0.400gm	0.700gm	0.300gm	0.200gm	2.4gm	1020 nm

Table 30 Particle size analysis table for nanoemulgel

6.3.5 Viscosity Measurement:

Table 31 viscosity meaasurment ua	ata	meaasurment	Viscosity	able 31	Tab
-----------------------------------	-----	-------------	-----------	---------	-----

Sr. No.	Batch No.	Viscosity
1.	2A	38 cps
2.	2B	42 cps

3.	10A	34 cps
4.	10B	36 cps

6.3.6 Physical Appearance:

Prepared Nanoemulgel is milky in appearance.

Figure 20 Physical appearance of Nanoemulgel

7. Conclusion

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

Dapsone in Nanoemulgel for treatment of Acne:

Dapsone widely used to treat acne topically. So Dapsone is selected for the formulating Nanoemulgel. Mostly in acne treatment topical products are used because of its ability to give local effect. Also topical products have some benefits like avoid first pass metabolism, no GI side effects, local action, etc.

The preliminary study shows Dapsone powder is in crystalline form and it has a solubility in very less oil phase and this are clove oil and triacetin. Solubility study also perform for the selection of surfactant and co-surfactant. Based on solubility study primary batches of dapsone was taken with different oil and surfactant combination with aim of preparing a stable and clear batch.

Then two combination of oil and surfactant were selected, one of them is Triacetin & Transcutol and second is Triacetin & capryol 90. From them, Triacetin and Transcutol was selected because they gave stable and clear emulsion.

Currently Dapsone gel available in two different ratio 5% and 7.5%. To get maximum drug loading, numbers of experiments were performed and the results shows 3.2% is the maximum drug that bear the Nanoemulsion system. On trying to add further drug emulsion would break. Also from results of performed experiments three different ratios of S_{mix} (9:4, 7:5, 2:1) was selected for performing ternary phase study.

Nanoemulgel was simply prepare by adding 1% Carbopol 934 gel into previously prepared Nanoemulsion which gives good results.

Pending Work:

- 1. Performing a phase diagram
- 2. Perform In-vitro release stud

References

- Barnes LE, Levender MM, Fleischer AB, Feldman SR. Quality of Life Measures for Acne Patients. Vol. 30, Dermatologic Clinics. Dermatol Clin; 2012. p. 293–300.
- Gollnick HP, Zouboulis CC. Not all acne is acne vulgaris. Dtsch Arztebl Int. 2014;111(17):301–12.
- Heng AHS, Chew FT. Systematic review of the epidemiology of acne vulgaris. Sci Rep. 2020;10(1):1–29.
- 4. Lynn D, Umari T, Dellavalle R, Dunnick C. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016 Jan;7:13.
- Dreno B, Gollnick HPM, Kang S, Thiboutot D, Bettoli V, Torres V, et al. Understanding innate immunity and inflammation in acne: Implications for management. J Eur Acad Dermatology Venereol. 2015 Jun 1;29(S4):3–11.
- 6. Das S, Reynolds R V. Recent Advances in Acne Pathogenesis: Implications for Therapy. Am J Clin Dermatol [Internet]. 2014 Dec 12 [cited 2020 May 28];15(6):479– 88. Available from: http://link.springer.com/10.1007/s40257-014-0099-z
- Satoskar RS, Rege N, Bhandarkar SD. Pharmacology and pharmacotherapeutics. 1170 p.
- Comedonal acne | DermNet NZ [Internet]. [cited 2020 May 28]. Available from: https://dermnetnz.org/topics/comedonal-acne/
- Types Acne Diagram Skin Problems Content Stock Vector (Royalty Free) 1255207660 [Internet]. [cited 2020 May 28]. Available from: https://www.shutterstock.com/imagevector/types-acne-diagram-skin-problems-content-1255207660
- Archer JS, Chang RJ. Hirsutism and acne in polycystic ovary syndrome. Vol. 18, Best Practice and Research: Clinical Obstetrics and Gynaecology. Bailliere Tindall Ltd; 2004. p. 737–54.

- Nast A, Dréno B, Bettoli V, Degitz K, Erdmann R, Finlay AY, et al. European evidence-based (S3) guidelines for the treatment of acne. Vol. 26, Journal of the European Academy of Dermatology and Venereology. J Eur Acad Dermatol Venereol; 2012. p. 1–29.
- Strauss JS, Krowchuk DP, Leyden JJ, Lucky AW, Shalita AR, Siegfried EC, et al. Guidelines of care for acne vulgaris management. J Am Acad Dermatol. 2007;56(4):651–63.
- Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J Nanobiotechnology [Internet]. 2018;16(1):1–33. Available from: https://doi.org/10.1186/s12951-018-0392-8
- Chuang SY, Lin CH, Huang TH, Fang JY. Lipid-Based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials. 2018;8(1):1–16.
- Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4(1).
- Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics [Internet]. 2019 Feb 7 [cited 2020 May 28];11(2):71. Available from: http://www.mdpi.com/1999-4923/11/2/71
- Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. Vol. 9, RSC Advances. Royal Society of Chemistry; 2019.
 p. 12944–67.
- Fast JP, Mecozzi S. Nanoemulsions for Intravenous Drug Delivery. In: Nanotechnology in Drug Delivery. Springer New York; 2009. p. 461–89.
- Hoar TP, Schulman JH. Transparent water-in-oil dispersions: The oleopathic hydromicelle [1]. Vol. 152, Nature. Nature Publishing Group; 1943. p. 102–3.
- 20. Jadhav K, Shaikh I, Ambade K, Kadam V. Applications of Microemulsion Based Drug

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

Delivery System. Curr Drug Deliv. 2006 Jun 30;3(3):267–73.

- Nanoemulsions: formation, structure, and physical properties IOPscience [Internet].
 [cited 2020 May 28]. Available from: https://iopscience.iop.org/article/10.1088/0953-8984/18/41/R01/meta
- 22. What is Pharmaceutical Nanoemulsion? Malaysia Research and Knowledge Transfer [Internet]. [cited 2020 May 28]. Available from: https://blogs.nottingham.ac.uk/malaysiaknowledgetransfer/2013/06/25/what-ispharmaceutical-nanoemulsion/
- Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. Front Sustain Food Syst. 2019;3(November):1–21.
- Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions Advances in Formulation, Characterization and Applications in Drug Delivery. Appl Nanotechnol Drug Deliv. 2014;
- 25. Vandamme TF, Anton N. Low-energy nanoemulsification to design veterinary controlled drug delivery devices. Int J Nanomedicine. 2010;5(1):867–73.
- Druetta P, Raffa P, Picchioni F. Plenty of room at the bottom: Nanotechnology as solution to an old issue in enhanced oil recovery. Vol. 8, Applied Sciences (Switzerland). MDPI AG; 2018.
- Zhang W, Qin Y, Gao Z, Ou W, Zhu H, Zhang Q. Phase behavior and stability of nano-emulsions prepared by D phase emulsification method. J Mol Liq. 2019 Jul 1;285:424–9.
- Kapoor MS, Guhasarkar S, Banerjee R. Stratum corneum modulation by chemical enhancers and lipid nanostructures: Implications for transdermal drug delivery. Vol. 8, Therapeutic Delivery. Future Medicine Ltd.; 2017. p. 701–18.
- Sengupta P, Chatterjee B. Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Vol. 526, International Journal of Pharmaceutics. Elsevier B.V.; 2017. p. 353–65.
- 30. Sengupta P, Chatterjee B. Potential and future scope of nanoemulgel formulation for

topical delivery of lipophilic drugs. Int J Pharm [Internet]. 2017;526(1–2):353–65. Available from: http://dx.doi.org/10.1016/j.ijpharm.2017.04.068

- Budhiraja A, Dhingra G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. 2015;7544.
- 32. Review C. Application Type Application Number (s) Priority or Standard Submit Date (s) Received Date (s) PDUFA Goal Date Division / Office Reviewer Name (s) Review Completion Date Established Name (Proposed) Trade Name Therapeutic Class Applicant Formulat. 2009;
- 33. Elmowafy M, Shalaby K, Ali HM, Alruwaili NK, Salama A, Ibrahim MF, et al. Impact of nanostructured lipid carriers on dapsone delivery to the skin: in vitro and in vivo studies. Int J Pharm. 2019 Dec 15;572:118781.
- Date AA, Patravale VB. Microemulsions : Applications in Transdermal and Dermal Delivery. 2015;(December).
- 35. Safaya M, Rotliwala YC. Materials Today : Proceedings Nanoemulsions : A review on low energy formulation methods , characterization , applications and optimization technique. Mater Today Proc [Internet]. 2019;(xxxx). Available from: https://doi.org/10.1016/j.matpr.2019.11.267
- 36. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy . Part I : Preformulation studies , formulation design and physicochemical evaluation. Int J Pharm [Internet]. 2012;431(1–2):138–48. Available from: http://dx.doi.org/10.1016/j.ijpharm.2011.12.040
- 37. Qian X, An Z, Hongfei W, Yujie B. ce pt us. Pharm Dev Technol [Internet].
 2019;0(0):000. Available from: http://dx.doi.org/10.1080/10837450.2019.1646757
- 38. Aithal GC, Nayak UY, Mehta C, Narayan R, Gopalkrishna P, Pandiyan S, et al.Localized In Situ Nanoemulgel Drug Delivery System of Quercetin for Periodontitis :
- Bachhav YG, Patravale VB. Microemulsion based vaginal gel of fluconazole : Formulation , in vitro and in vivo evaluation. 2009;365:175–9.

INSTITUTE OF PHARMACY NIRMA UNIVERSITY

- 40. Pires PC, Peixoto D, Teixeira I, Rodrigues M, Alves G, Santos AO. Nanoemulsions and thermosensitive nanoemulgels of phenytoin and fosphenytoin for intranasal administration: formulation development and in vitro characterization. Eur J Pharm Sci [Internet]. 2019;105099. Available from: https://doi.org/10.1016/j.ejps.2019.105099
- Sungpud C, Id WP, Chaijan M, Yoon AS. Techno-biofunctionality of mangostin extract- loaded virgin coconut oil nanoemulsion and nanoemulgel. 2020;1–22.
 Available from: http://dx.doi.org/10.1371/journal.pone.0227979
- 42. Srivastava M, Neupane YR, Kumar P, Kohli K. Nanoemulgel (NEG) of Ketoprofen with eugenol as oil phase for the treatment of ligature-induced experimental periodontitis in Wistar rats. 2014;7544:1–7.
- 43. Jeengar MK, Vishnu S, Rompicharla K, Shrivastava S, Chella N, Shastri NR, et al. Emu oil based nano-emulgel for topical delivery of curcumin. Int J Pharm [Internet].
 2016; Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.04.052
- 44. Setya S, Madaan T, Tariq M, Razdan BK, Talegaonkar S. Appraisal of Transdermal Water-in-Oil Nanoemulgel of Selegiline HCl for the Effective Management of Parkinson 's Disease : Pharmacodynamic , Pharmacokinetic , and Biochemical Investigations. 2017;(3).
- Samia O, Hanan R, Kamal ET. Carbamazepine Mucoadhesive Nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. 2012;19(October 2011):58–67.
- 46. Mao Y, Chen X, Xu B, Shen Y, Ye Z, Liu L, et al. Eprinomectin nanoemulgel for transdermal delivery against endoparasites and ectoparasites : preparation , in vitro and in vivo evaluation. 2019;7544.
- 47. Pund S, Pawar S, Gangurde S, Divate D. Transcutaneous delivery of le fl unomide nanoemulgel : Mechanistic investigation into physicomechanical characteristics , in vitro anti-psoriatic and anti-melanoma activity. Int J Pharm [Internet]. 2015; Available from: http://dx.doi.org/10.1016/j.ijpharm.2015.04.015
- 48. No Title [Internet]. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dapsone

- 49. No Title [Internet]. Dailymed. Available from: https://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=e3426f2f-4d2b-40b4-ac26e7d873c30f78
- 50. No Title [Internet]. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Triacetin
- 51. No Title [Internet]. Gatteffos. Available from: https://www.gattefosse.com/labrasol
- 52. No Title [Internet]. Gatteffos. Available from: https://www.gattefosse.com/pharmaceuticals-products/transcutol-p
- No Title [Internet]. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Polysorbate-80
- 54. No Title. Available from: https://pubmed.ncbi.nlm.nih.gov/13278265/

Full_Thesis_with_Reference_and_changes_for_plagiarism_chec.

ORIGIN	IALITY REPORT				
5 SIMIL	% ARITY INDEX	4 % INTERNET SOURCES	2% PUBLICATIONS	% STUDENT PAPEI	RS
PRIMA	RY SOURCES				
1	WWW.ACC	p.com			2%
2	M. Safay review of characte technique Publication	va, Y.C. Rotliwala n low energy forn rization, applicati e", Materials Tod	a. "Nanoemuls nulation metho ons and optim ay: Proceedin	ions: A ods, nization gs, 2019	1%
3	link.sprin	iger.com			1%
4	www.der	mnetnz.org			1%
5	www.dru	gbank.ca •			1%

Exclude quotes	Off	Exclude matches	< 1%
Exclude bibliography	On		

Full_Thesis_with_Reference_and_changes_for_plagiarism_check

	GRADEMARK REPORT	
	FINAL GRADE	GENERAL COMMENTS
	/0	Instructor
_	PAGE 1	
	PAGE 2	
	PAGE 3	
	PAGE 4	
	PAGE 5	
	PAGE 6	
	PAGE 7	
	PAGE 8	
	PAGE 9	
	PAGE 10	
	PAGE 11	
	PAGE 12	
	PAGE 13	
	PAGE 14	
	PAGE 15	
	PAGE 16	
	PAGE 17	
	PAGE 18	
	PAGE 19	

PAGE 21
PAGE 22
PAGE 23
PAGE 24
PAGE 25
PAGE 26
PAGE 27
PAGE 28
PAGE 29
PAGE 30
PAGE 31
PAGE 32
PAGE 33
PAGE 34
PAGE 35
PAGE 36
PAGE 37
PAGE 38
PAGE 39
PAGE 40
PAGE 41
PAGE 42
PAGE 43
PAGE 44
PAGE 45

PAGE 46
PAGE 47
PAGE 48
PAGE 49
PAGE 50
PAGE 51
PAGE 52
PAGE 53
PAGE 54
PAGE 55
PAGE 56
PAGE 57
PAGE 58
PAGE 59
PAGE 60
PAGE 61
PAGE 62
PAGE 63
PAGE 64
PAGE 65
PAGE 66
PAGE 67
PAGE 68
PAGE 69
PAGE 70

PAGE 71			
PAGE 72			
PAGE 73			