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1. Introduction

Multiple Sclerosis (MS) is an “immune mediated disease” and not
auto-immune, due to the reason that it is unknown for which antigen
immune cells are activated. These activated immune cells attack the
myelin layer of nerve cell and form a scar (Sclerosis) (www.natio-
nalmssociety.org). It is seen that people suffering from multiple
sclerosis have increased from 2 million to 2.3 million, and yet there is
no cure. So there is a need to design potential drug like molecules. Rho
kinase has been recently seen to play a role in MS, where its inhibition
induces myelin regeneration. Rho kinase belongs to the serine-threo-
nine family and has 160 kDa of molecular weight. With two isoforms
namely ROCK-1 and ROCK-2 it has a vital role to play in the physio-
logical function of cell contraction, proliferation and migration
(Hirooka et al., 2004). The inhibition of Rho kinase has been proven
useful in various medical conditions like multiple sclerosis (Luo et al.,
2014; Kjoller and Hall, 1999), inflammatory disorders (LoGrasso and
Feng, 2009), myocardial ischemia (Satoh et al., 2007), hypertension
(Uehata et al., 1997), erectile dysfunction (Bivalacqua et al., 2004),
glaucoma (Waki et al., 2001), cancer migration (Nakajima et al., 2003a,
2003b) and spinal cord injury (Chan et al., 2005). This has led to the
discovery of various classes of ROCK inhibitors with basic scaffolds of
isoquinolines (Chan et al., 2005), pyridines (Chen et al., 2014), ben-
zodioxane amides (Takami et al., 2004) chromane amides (Feng et al.,
2008), azaindoles (Chen et al., 2008), benzimidazoles, benzoxazoles
(Schirok et al., 2008a), benzothiazoles (Sessions et al., 2008), indazoles
(Yin et al., 2009), aniline-ureas (Feng et al., 2007) and tetra-
hydroisoquinolines (Yin et al., 2010). With these many molecules only
one has been marketed, Fasudil (HA-1077), which structurally is
composed of an isoquinoline (Fang et al., 2010) and homopiperazine
ring connected by a sulphonyl group (Dong et al., 2010). Rho kinase-2
inhibition, from recent studies has proven to be quite effective in the
treatment of multiple sclerosis. There is a need to design and synthesize
new compounds with good pharmacokinetic properties and low IC50.
To achieve this aim computer aided drug design like pharmacophore
modeling and docking were employed. To further optimize designed
lead, their ADMET (Absorption, Distribution, Metabolism, Excretion
and Toxicity) properties were predicted through online available

software, and changes were made to make it less toxic (Gramatica,
2007).

2. Materials and computational methods

2.1. Dataset selection

Eight structurally diverse and highly potent molecules were used to
generate ligand based Pharmacophore, which are shown in Table 1
(Feng et al., 2008; Chen et al., 2008; Sessions et al., 2008; Yin et al.,
2009; Schirok et al., 2008b). The tripos force field function of Sybyl X
was used to minimize the energy of molecules. After, energy mini-
mization partial atomic charge was calculated using the Gasteiger
Huckel method. Every other parameter for computation of minimiza-
tion was kept as default.

2.2. The pharmacophore generation

GALAHAD module of Sybyl X was used to generate pharmacophore.
GALAHAD uses the genetic algorithm to align molecules and also
considers multiple parameters for scoring like pharmacophoric overlap,
energetics and steric similarity. It has a mode of keeping conforma-
tional flexibility, after which models are generated as hypermolecules.
Each hypermolecule contains features from each molecule in training
set. The selected model then can be used as a probe for screening dif-
ferent databases. For the generation of the pharmacophore, all the
parameters were kept as default except population size, which was
entered as 40 and maximum generations was changed to 80. Finally, 20
models were generated considering specificity and Pareto ranking, from
which top 3 models are shown in Table 2.

2.3. Validation of pharmacophore model

GH (Güner Henry) scoring method and ROC (Receiver Operating
Characteristics) curve analysis are generally used for validation of
pharmacophore. They help in determining reliability and accuracy of
the pharmacophore model (Patel et al., 2002; Thangapandian et al.,
2011).
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Table 1
Training set molecules used to develop pharmacophore hypothesis for ROCK-2 inhibitors.

Sr. No. Structure Chemical Class IC50 Value
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In Güner-Henry (GH) Scoring method, 26 diverse actives were taken
from various published literature and 208 decoy molecules were
downloaded from the DUD database (Patel et al., 2002). In a total, 234
molecule database was screened against top scored Model_03 after
generation of conformers. False positive and true positive rates were
calculated. For further validation enrichment ratio, % yield and GH
score were formulated as shown in Table 3. The value of the GH score
should be between 0.7 and 1. If it is 0 then it is considered as a null
model and if it is 1 then it is said to be an ideal model.

The same database of 234 molecules was used for ROC analysis and
ROC curve was plotted using SPSS (Statistical Package for the Social
Sciences) software. From the obtained results of hits, a graph of sensi-
tivity v/s 1-specificity was plotted. The pharmacophore model is only
declared as validated if AUC in the graph is> 0.5. This can only be
obtained if the model retrieves most of the actives and lesser inactive
from the dataset. Sensitivity measures the number of true positives, i.e.
the actual number of actives retrieved and specificity measures false
positives.

=

+

Sensitivity
Numberoftruepositives

NumberoftruePositives Numberoffalsenegatives( )

=

+

Specificity
Numberoftruenegatives

Numberoftruenegatives Numberoffalsepositives( )

2.4. Virtual screening and designing molecules

Potential leads are needed to be discovered to overcome the dis-
advantages of already available potent molecules and also to design a
new class. This is possible by screening a different database over ob-
tained pharmacophore. Virtual screening has proved to be beneficial in
scaffold hopping; many new drugs have been synthesized and marketed
with the use of this technology. The unity search module of Sybyl X was
used to perform the virtual screening. All the parameters were set as
default except priority, which was turned up to high. The IBS database
was screened against validated pharmacophore and Lipinski's rule of
five and other filters like removing counter ions, bad fragments, etc.
were applied on obtained hits. Hits were ranked on the basis of Qfit.
The Qfit value represents “pharmacophoric match between query and

the hit compound” (Fei et al., 2013). Few hits retrieved after virtual
screening that scored Qfit value more than 80 were analyzed structu-
rally and they were found to contain benzthiazole moiety.

2.5. Docking

To identify the binding pose of a molecule, docking was performed.
The binding pose of a standard was compared with the test molecule, so
that essential amino acids can be identified. GOLD and Surflex module
of Sybyl X were used to dock compounds and from the score most po-
tential candidates were identified. The kinase domain of Rho kinase-2
was utilized for docking, which was obtained from RCSB (Research
Collaboratory for Structural Bioinformatics) protein data bank (PDB id:
2F2U) with a resolution of 2.43 Ǻ. The Surflex-Dock module of Sybyl X
gives a consensus score (CSscore) which comprises of polar, entropic,
solvation and repulsive terms. In this method, first the protein structure
was prepared by removing substructures and extracting the structure of
docked ligand (fasudil). The protein structure was energy minimized in
the presence of Tripos force field and partial atomic charge of
Gasteiger-Huckel. The protomol was generated at the site of protein-
ligand interaction. The designed molecules were then docked at the
protomol site. The Following is the information obtained after per-
forming docking.

a. Total score which is the Consensus score given as -log (Kd).
b. Polar value defines hydrogen bonding and can be useful when ex-

cluding compounds without hydrogen bonding.
c. Crash value is the degree of inappropriate penetration by the ligand

into the protein and of interpenetration between ligand atoms (self-
clash) that are separated by rotatable bonds. Crash scores close to 0
are favourable.

Docking in GOLD gives you the GOLD score (Chowdhury et al.,
2011)which comprises of protein-ligand hydrogen bond energy (ex-
ternal H-bond), protein-ligand van der Waals (vdw) energy (external
vdw), ligand internal vdw energy (internal vdw), ligand torsional strain
energy (internal torsion) and optionally, a fifth component, ligand
intra-molecular hydrogen bond energy (internal H-bond), may be
added. Docking study was performed stepwise, directed in the GOLD
wizard. The hydrogen and water molecules were removed from the
uploaded protein structure. Fasudil was extracted as a standard mole-
cule from chain ‘A’ and that area of extraction was defined as the
binding site. The GOLD template was selected as Chemscore-kinase and
Score was selected as a GOLD score. The run was performed at the slow
speed to produce more accurate results.

2.6. In-silico ADMET prediction

In silico ADMET prediction can help in knowing absorption, dis-
tribution, metabolism, excretion and toxicity pattern of a candidate
prior to synthesis. This can save both time and cost for designing of a
molecule. It is very helpful in lead optimization, wherein physico-
chemical properties are required to be improved (Ju et al., 2007).

OSIRIS (http://www.organic-chemistry.org/prog/peo/) and Pre-
ADMET (https://preadmet.bmdrc.kr/adme) software were used to
predict In silico pharmacokinetic properties and toxicities. In an OSIRIS
window, molecules were drawn and different toxicities like mutageni-
city, tumorigenicity, irritating effect, reproductive effects, as well as
parameters like TPSA, drug likeliness, and the drug score of given
compounds were predicted. In PreADMET study, molecules were taken
in.mol format and their ADMET properties were predicted.

Table 2
Results of the pharmacophore hypothesis generated by GALAHAD.

Models Specificitya Hitsb Featuresc Pareto Rankingd Energy

Model_03 5.205 7 5 0 1.84
Model_05 4.94 7 5 0 3.56
Model_06 5.030 8 4 0 4.74

a Specificity measures the number of false positives.
b Hits is the number of molecules that matched during the search.
c Molecular framework responsible for a drug's biological activity.
d Pareto Ranking shows the hierarchical position of conformer generated.

Table 3
Statistical Parameter for GH Scoring Method.

Sr. No. Parameter Value

1 Total molecules in database (T) 234
2 Total number of Decoys (D) 208
3 Total Number of actives in database (A) 26
4 Total Hits (Ht) 30
5 Active Hits (Ha) 24
6 % Yield of actives [(Ha/Ht)*100] 80%
7 % Ratio of actives [(Ha/A)*100] 92.3%
8 Enrichment factor (E) [(Ha*D)/(Ht*A)] 6.4
9 False Negatives [A - Ha] 2
10 False Positives [Ht - Ha] 6
11 Goodness of Hit Score 0.729
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3. Results and discussion

3.1. Pharmacophore generation

Pharmacophore analysis by GALAHARD resulted into the genera-
tion of 20 models. All the models were analyzed for their specificity, the
number of hits and features. Model_3 which scored the highest speci-
ficity of 5.205 and lowest energy of 1.84 Kcal with 5 features; one
donor atom, two acceptor atoms and two hydrophobic features was
selected for validation before using it for virtual screening. The result
table shows the number of features, hits, specificity, Pareto ranking and
energy (Table 2). Specificity indicates how well the features are gen-
erated for that specific set of a training set, which in turn helps in de-
creasing the number of false positives obtained during validation.
Specificity should be greater than 5. Pareto Ranking shows a hier-
archical position of conformer generated by the genetic algorithm for
the generation of hypothesis, ‘0’ shows that it is a child and no further
conformers can be generated and ‘1’ depicts a parent, where further
modifications can be done. With Pareto ranking 0 and specificity
greater than 5, this five featured model 3 can be considered as an op-
timum model. A three dimensional pharmacophore hypothesis is shown
in Fig. 1.

3.2. Validation of the pharmacophore

Guner-Henry score defines how well actives are retrieved from a
total dataset which consists of active molecules with inactive decoy
molecules (Fei et al., 2013). With the GH score ‘1’, the model can be
considered as an ideal model and ‘0’ shows a null model. Practically GH
score greater than 0.6 indicates an acceptable model for the virtual
screening. The results of Unity search of this dataset against the query
model_3 gave 30 hits which were found to map on all five features of
the pharmacophore model. Out of 30 hits, 24 molecules were active,
while only 6 were inactive decoy molecules. Thus, model 3 was found
excellent in retrieving actives from the inactives. All the parameters
required for GH score were calculated and is shown in Table 3.
Model_03 yielded GH score of 0.729, henceforth it was considered re-
liable for the virtual screening of chemical databases.

ROC curve (Fig. 2) shows a performance of the pharmacophore
model by detecting how well it retrieves true positives. Here, the ROC
curve gave AUC (Area under the curve) of 0.857 with a standard error
of 0.034, which depicts a fair and significant model. Sensitivity and
specificity of pharmacophore model_03 were found to be 0.923 and
0.971 respectively, which shows that the greater number of true posi-
tives were retrieved rather than false positives. The value of other
parameters calculated is shown in Table 4.

Fig. 1. Three Dimensional Pharmacophore Hypothesis Generated by GALAHAD.

Fig. 2. ROC Curve of the Pharmacophore Model_03.

Table 4
ROC Parameters of Pharmacophore Model.

Sr No. Parameter Value

1 False positive rate (FP) .028
2 True Positive rate (TP) .920
3 Precision 0.8
4 Recall 0.920
5 Accuracy 0.982
6 F-measure 0.855
7 Sensitivity 0.923
8 Specificity 0.971

Table 5
Docking score of designed molecules using surflex dock & GOLD suite.

Sr. No. Compound IUPAC Nomenclature GOLD Score CS score

1 Fasudil 5-(1,4-diazepam−1-ylsulfonyl)isoquinoline 48.621 5.1246
2 RIK−1 N-(benzo[d]thiazol−2-ylmethyl)benzamide 52.764 5.2064
3 RIK−2 N-(benzo[d]thiazol−2-ylmethyl)−3-chlorobenzamide 56.305 5.0138
4 RIK−3 N-(benzo[d]thiazol−2-ylmethyl)−3-nitrobenzamide 56.263 5.7635
5 RIK−4 N-(benzo[d]thiazol−2-ylmethyl)−3-aminobenzamide 54.274 5.7570
6 RIK−5 N-(benzo[d]thiazol−2-ylmethyl)−3-bromobenzamide 57.040 5.1086
7 RIK−6 N-(benzo[d]thiazol−2-ylmethyl)−4-chlorobenzamide 58.259 6.5154
8 RIK−7 N-(benzo[d]thiazol−2-ylmethyl)−4-nitrobenzamide 57.375 5.5307
9 RIK−8 N-(benzo[d]thiazol−2-ylmethyl)−4-aminobenzamide 54.600 4.4181
10 RIK−9 N-(benzo[d]thiazol−2-ylmethyl)−4-bromobenzamide 58.313 6.7283
11 RIK−11 N-(benzo[d]thiazol−2-ylmethyl)pyrazin−2-amine 49.457 4.6708
12 RIK−13 N-(benzo[d]thiazol−2-ylmethyl)−2-(piperazin−1-yl)ethanamine 57.771 5.0236
13 RIK−14 N-(benzo[d]thiazol−2-ylmethyl)pyridin−4-amine 53.910 5.2092
14 RIK−15 N-(benzo[d]thiazol−2-ylmethyl)thiazol−2-amine 46.311 4.346
15 RIK−16 N-(benzo[d]thiazol−2-ylmethyl)−4-chloropyridin−2-amine 52.171 5.1964
16 RIK−17 N-(benzo[d]thiazol−2-ylmethyl)−5-nitropyridin−2-amine 51.519 3.2180
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Table 6
Docking analysis of designed molecules.

Sr. No. Compound Crash Value Polar Amino acid interaction

1 Fasudil −1.5430 1.2048 MET172, ALA119,MET169, ALA231, LEU221, VAL106
2 RIK−1 −0.5364 0.9212 VAL 178, ALA119,MET169, LEU221, VAL106, ALA231
3 RIK−2 −1.1796 1.5060 ILE98,VAL153,MET172, ALA119,MET169,LEU221, VAL106
4 RIK−3 −1.1526 0.0105 ILE98, MET172, ALA119, MET169,LEU221, VAL106
5 RIK−4 −1.3442 0.0125 ILE98,ASP218,VAL153,ASN219, MET172, ALA119, MET169, LEU221, VAL106
6 RIK−5 −1.1735 1.0123 ILE98,VAL 153, MET172, ALA119, MET169, LEU221, VAL106
7 RIK−6 −1.6070 1.1034 ILE98,VAL178,VAL 153, MET172,ALA119,MET169, LEU221, VAL106, ALA231
8 RIK−7 −0.5227 1.0081 ILE98,ARG100,VAL 153, MET172,ALA119,MET169, LEU221, VAL106, ALA231
9 RIK−8 −0.7281 1.3364 ILE98,TYR171,VAL 153, MET172,ALA119,MET169, LEU221, VAL106, ALA231
10 RIK−9 −1.2095 1.1584 ILE98, TYR171,VAL 153, MET172,ALA119,MET169, LEU221, VAL106
11 RIK−11 −1.4569 0.7898 ARG100, ASP231,GLY101, LYS121, VAL106, ALA231
12 RIK−13 −1.1735 1.0521 ILE98, TYR171,VAL 153, MET172,ALA119,MET169, LEU221, VAL106
13 RIK−14 −1.3292 0.0100 ILE98,ALA119, ALA231 LEU221, VAL106
14 RIK−15 −1.2347 0.4639 GLY99,VAL 153, MET172,ALA119,MET169, LEU221, VAL106
15 RIK−16 −0.6402 0.0525 ILE98,TYR171,VAL 153, MET172,ALA119,MET169, LEU221, VAL106
16 RIK−17 −1.4835 1.9492 ILE98, TYR171,VAL 153, MET172,ALA119,MET169, LEU221, VAL106

Fig. 3. Binding poses of designed molecules using Surflex Dock.
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3.3. Virtual screening and designing of molecules

Virtual screening of the IBS database (6 lakh molecules) against
validated model 3 gave 1.33 lakh hits. After applying various filters like
duplicate structures, bad fragments and Lipinski rule of 5, the hit list
reduced to “88,955”. Amongst these, 40 molecules exhibited more than
80 Qfit value against Model_03 hence, selected for structural analysis
and it was observed that many of them possess benzothiazole moiety.
Based on these hit structures and features of the pharmacophore, 15
novel benzothiazole derivatives were designed and subjected to mole-
cular docking to evaluate their binding mode.

3.4. Molecular docking

Results of molecular docking of 15 designed molecules into kinase
domain suggested that almost all the interactions of designed molecules
with the target matched with the interactions of the standard molecule,
i.e. Fasudil with the target. Out of 15 molecules, 7 had both CS score

and GOLD score higher than Fasudil as shown in Table 5. Those 7
molecules were compound 1, 3, 4, 6, 7, 9 and 16. The amino acid in
bold represent those interactions which are common to both Fasudil
and the designed molecules (Tables 5 and 6).

Binding poses of Fasudil, compound 1, 3 and 9 are shown in Fig. 3.
It is observed that almost all the compounds have similar interactions
with that of Fasudil. Compound 1 forms pi-pi stacking with TYR171
and all of them share hydrogen bonding and electrostatic interaction
with MET172, ALA119, MET169, ALA231, LEU221, VAL106
(Table 6).

3.5. In-silico ADMET prediction

Results of ADME and toxicity prediction using OSIRIS property ex-
plorer and PreADMET software are reported in Tables 7, 8. According to
the predicted properties RIK-1 and RIK-15 found to be good CNS acting
candidates. RIK-11 has the highest drug score of 0.9, but it has a low
BBB permeability, so for multiple sclerosis studies it might not prove to

Table 7
In silico ADME studies of designed molecules.

Comp. BBB Caco2 permeability CyP3A4 inhibitor Human intestinal absorption Plasma protein binding TPSA Drug likeness

Fasudil 0.237 21.57 No 96.70 17.23 57.79 2.31
RIK−1 1.38 24.64 No 96.17 95.43 70.23 3.41
RIK−2 0.44 47.83 No 96.38 93.65 70.23 5.07
RIK−3 0.037 37.75 No 95.81 96.56 116 −8.69
RIK−4 0.18 4.76 No 95.40 84.58 96.25 3.98
RIK−5 0.48 39.95 No 96.65 90.34 70.23 2.12
RIK−6 0.57 55.95 No 96.38 100 70.23 0.17
RIK−7 0.04 1.54 No 95.81 96.56 96.25 0.31
RIK−8 0.34 5.89 No 95.77 88.45 116 −3.02
RIK−9 0.67 45.67 No 96.82 91.55 70.23 −1.07
RIK−11 0.15 26.32 No 96.84 79.90 78.94 2.31
RIK−13 0.02 22.42 No 94.36 18.20 68.43 4.52
RIK−14 0.01 27.68 No 96.12 84.17 66.05 2.2
RIK−15 1.60 27.55 No 96.73 100 81.4 2.9
RIK−16 0.90 49.46 No 96.27 90.21 66.05 2.35
RIK−17 0.01 3.34 No 95.02 88.89 111.8 −2.93

Below mentioned is the different pharmacokinetic properties and their acceptable range: -.
BBB:- Indicates BB (Cbrain/Cblood) ratio. Value> 2.0 suggested high absorption to CNS while value< 0.1 indicates very low absorption.
Caco2 permeability: Value of the Pcaco2 (nm/sec)> 70 suggested high permeability while value< 4 indicates low permeability.
HIA: Calculated HIA at pH 7.4: - Value between 0% and 20% indicates poor absorption, 20–70% indicates moderate absorption while 70–100% indicates fair absorption.
Plasma protein binding: Value> 90% indicates strong protein binding, i.e. a low amount of drug available for distribution.
TPSA (Topological polar surface area): Value 80 or 100 Å2 indicates good bioavailability.
Drug Likeness: Positive value indicates that the molecule has properties like that of the traded drug.
An In silico investigation for the prediction of rat acute toxicity of the design compounds revealed that compounds RIK-5, 8 and 13 are slightly toxic (class 4). Except RIK-5, 8 and 13 all
other compounds are practically nontoxic (class 5) (Table 8). The results obtained from the software also revealed that almost all compounds found to be safe except RIK-13, which has a
medium risk of tumorigenic effect (Table 8).

Table 8
In-silico toxicity studies of designed molecules.

Compound No Mutagenic Effect Tumorigenic Effect Irritant Reproductive Effect Acute Rat Toxicity Drug Score

Fasudil No No No No Class 5 0.88
RIK−1 No No No No Class 5 0.85
RIK−2 No No No No Class 5 0.78
RIK−3 No No No No Class 5 0.42
RIK−4 No No No No Class 5 0.87
RIK−5 No No No No Class 4 0.74
RIK−6 No No No No Class 5 0.57
RIK−7 No No No No Class 5 0.69
RIK−8 No No No No Class 4 0.44
RIK−9 No No No No Class 5 0.47
RIK−11 No No No No Class 5 0.9
RIK−13 No Medium Risk No No Class 4 0.76
RIK−14 No No No No Class 5 0.88
RIK−15 No No No No Class 5 0.84
RIK−16 No No No No Class 5 0.79
RIK−17 No No No No Class 5 0.46

Drug Score: It is given out of 1. It determines the overall potential of drug by combining druglikeness, cLogP, logS, molecular weight and toxicity risks.
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be an effective as depicted in Table 7. All the compounds were found to
have fair absorption from the in silico human absorption data. From
Caco2 permeability study it was observed that all compounds found to
have well predicted permeability except RIK 7 and 17.

Plasma Protein binding study indicated a very low amount of
compound to be available for distribution except for the compounds
RIK 4, 8, 11, 13, 14 and 17. The topological polar surface area and drug
likeliness data suggested that all compounds found to have the pre-
dicted activity within the range except compounds RIK- 3, 8 and 17.

4. Conclusion

2.3 million People are right now suffering from Multiple Sclerosis;
number even may be high as it is not easily diagnosed. Fasudil which
was used as vasodilator now has shown activity against ROCK-2 in EAE
models with axonal regeneration. It has IC50 of 1.9 micromolar and is
the only marketed drug for MS. Hence there is a need to design mole-
cules with low IC50 and good pharmacokinetic properties. 8 different
structures were taken for the pharmacophore generation with the
GALAHAD module of Sybyl. The best model contained 2 hydrophobic, 1
donor atom, 2 acceptor site. This model was validated through GH and
ROC method. Virtual screening gave 40 compounds with Qfit value
greater than 80% after filtering. Designed benzthiazole derivatives were
docked into the kinase domain of ROCK-2 (PDB i.d.: 2F2U). Out of 15
designed molecules 7 had both the CS score and GOLD score higher
than Fasudil. Further the designed molecules were screened for ADMET
prediction using OSIRIS and ADMETsar software. According to the
Organisation for Economic Co-operation and Development (OECD)
classification all the designed compounds found to be safe based on in
silico toxicity prediction. The predicted ADMET studies suggested RIK
16 (N-(benzo[d]thiazol-2-ylmethyl)− 4-chloropyridin-2-amine) to be a
promising molecule as Rho kinase 2 inhibitor.
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