Please use this identifier to cite or link to this item: http://10.1.7.192:80/jspui/handle/123456789/6666
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDutta, Ankan-
dc.date.accessioned2016-07-19T05:39:17Z-
dc.date.available2016-07-19T05:39:17Z-
dc.date.issued2016-06-01-
dc.identifier.urihttp://hdl.handle.net/123456789/6666-
dc.description.abstractIn this thesis, we will discuss why speech recognition is still a very challenging task. Then we will go through the concepts of machine learning and deep learning necessary for speech recognition systems like Hidden Markov Models(HMMs), Gaussian Mixture Mod- els(GMMs), Deep De-Noising Auto-Encoder and Convolutional Neural Networks(CNNs). We will also discuss how Deep De-noising Auto-Encoder and Convolutional Neural Net- work will increase the reliability and robustness. The main target of this project is to implement the architecture of automatic audio speech recognition system. We will discuss this implementation using Kaldi framework. Further, on the same dataset, we will discuss the implementation of speaker identification system using k-nearest neighbor algorithm.en_US
dc.publisherInstitute of Technologyen_US
dc.relation.ispartofseries14MCEI03;-
dc.subjectComputer 2014en_US
dc.subjectProject Report 2014en_US
dc.subjectComputer Project Reporten_US
dc.subjectProject Reporten_US
dc.subject14MCEIen_US
dc.subject14MCEI03en_US
dc.subjectINSen_US
dc.subjectINS 2014en_US
dc.subjectCE (INS)en_US
dc.titleAutomatic Speech Recognition Using Deep Learningen_US
dc.typeDissertationen_US
Appears in Collections:Dissertation, CE (INS)

Files in This Item:
File Description SizeFormat 
14MCEI03.pdf14MCEI031.5 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.